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ABSTRACT
Nile tilapia (Oreochromis niloticus) production is ranked on the top of aquaculture fish in Egypt. This study was 
aimed to screen bacteria associated with aquaculture fresh-water tilapia to determine the microbiological safety of 
these wide distributed fish in Egypt. The mean viable bacterial count from fish fillets with the skin samples revealed 
5.6 ± 0.8 logs CFU/g. A total of eleven (11) bacterial species were isolated and identified including: E. coli, E. coli 
O157: H7, Salmonella enterica, Morganella morganii, Proteus mirabilis, Proteus vulgaris, Enterobacter cloacae, 
Enterobacter cancerogenus, Hafnia alvei, Aeromonas hydrophila, Photobacterium damaselae. The frequency of 
occurrences of the isolated bacteria indicated that Enterobacter cloacae had the highest frequency of occurrence 
(12%), while one isolate (2%) of Salmonella enterica, E coli O157:H7, and Aeromonas hydrophila were detected. 
These bacterial species are potentially pathogenic to humans. Therefore, hygienic handling methods and proper 
processing are needed before consumption of this fish.
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Introduction
Aquaculture is considered one of the fastest growing aspects of 
agricultural industry over the world. With increasing demand for 
food fish and other seafood products, aquaculture has the potential 
of becoming an important alternative supply of these products 
(Lucas, 2003). Tilapia fish is widely grown farmed fish and is 
considered the second most important group after carps. In 2004, 
tilapia was ranked the eighth most popular among all seafood in 
the USA global. Production of tilapia (all species) was estimated 
1.5 million tons in 2003 and increased to 2.5 million tons by 2010. 
Most of this enhanced production is expected to be attributed to 
Nile tilapia. Egypt is the world’s second largest producer of farmed 
tilapia after China [1]. Egypt has the largest aquaculture industry in 
Africa that provides about 75.46 % of the country’s fish production 
[2]. Nile tilapia production is ranked on the top of aquaculture fish 
in Egypt, its production increased from 557,049 tons in 2010 to 
768,752 in 2012 [3].

Major pathogens that are affecting the aquaculture include 
bacteria, fungi, viruses, and parasites [4-6]. Bacterial diseases 
have become major concern to aquaculture, especially with warm 
water temperature [7]. Different bacterial species were reported 
pathogenic to aquatic tilapia, including Aeromonas hydrophila, 
Edwardsiella tarda, Flavobacterium columnare, Francisella spp., 
Yersinia ruckeri, Staphylococcus epidermidis, Vibrio vulnificus, 
and Streptococcus agalactiae [8-16].

According to data from the Centers for Disease Control and 
Prevention (CDC) [17] fish was linked to 24% of foodborne illness 
outbreaks and 6% of all food poisoning, or foodborne illness. Level 
of bacterial pathogens in tilapia fish was related to environment 
and handling prior to their arrival to food market and restaurants. 
Bacteria associated with tilapia fish could be transmitted to person 
in contact and result in foodborne illness. For example, handling 
tilapia was reported associated with Vibrio vulnificus outbreak in 
Seattle supermarket [18]. Other foodborne pathogenic bacteria 
including Salmonella enterica, enteropathogenic Escherichia coli, 
Listeria monocytogenes, Yersinia enterocolitica, and Klebsiella 
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pneumoniae were identified from fresh Nile tilapia in Kenyan 
fresh water fish chains [19]. Shigatoxigenic and enteropathogenic 
Escherichia coli were isolated from farmed tilapia fish 
(Oreochromis niloticus) in northeast region of Sao Paulo state 
[20]. Monitoring bacteria associated with aquaculture tilapia fish 
of great importance to public health because they help understand 
pathogen epidemiology in fish and demonstrate how they can 
transmit food borne illness related to fish to humans. The aim 
of this study was to screen bacteria associated with aquaculture 
tilapia to determine the microbiological food safety of these wide 
distributed fish in Egypt.

Materials and methods
A total of 50 healthy fresh water tilapia fish (Oreochromis 
niloticus) were randomly selected from a commercial food fish 
farms located in Suez, Egypt. All fish samples during collection 
were placed in sterile polypropylene bags, placed in polystyrene 
box containing crushed ice and the temperatures was between 4 
°C and 6 °C during transportation. Ice was prepared in laboratory 
using sterile distilled deionized water. Samples were transported to 
the laboratory and examined immediately.

Bacteriological analysis
Fish samples were processed in complete aseptic condition. Fish 
were filleted where skin part were kept with the flesh using sterile 
knifes and forceps and placed on sterile tray. Samples (25 g) were 
homogenized for 2 min. in a sterile bag containing 225 ml of 
buffered peptone water (0.1%) (Lab M, UK) using a stomacher 
(Seward Stomacher 400 circulator, UK). After incubation for 18-
24 h at 35 °C, 1 ml was transferred for further analysis from this 
nonselective pre-enrichment.

Aerobic plate count
Serial dilution 1:10 folds were then performed for total aerobic 
bacterial count. Dilutions were spread-plated onto plate count 
agar (lab M, UK) and incubated at 35 ±1℃ overnight. Readings 
obtained within 25 to 250 colonies on a plate were used to calculate 
bacterial population numbers, and reported as logs of colony 
forming units (CFU/g). Experiments were repeated and results 
were represented as means ± standard deviations.

Isolation and identification of bacteria
E.coli and E.coli O157: H7 were identified by transfer pre-
enrichment culture (1 ml) to Escherichia coli selective broth 
supplemented with novobiocin (EC+n) [21]. A loopful of culture 
was streaked onto a chromogenic selective agar (Lab M, Lancashire, 
UK), and sorbitol MacConkey agar (SMAC, Lab M, Lancashire, 
UK). Violet-colored colonies will be selected on the chromogenic 
selective agar. Non-sorbitol fermenting E. coli O157:H7 produce 
pale, colourless colonies will be selected from SMAC [22]. Suspect 
colonies are identified biochemically with indole kovac’s reagent 
(Merck, Germany), Simmon citrate agar (Lab M, UK), Methyle 
red (MR, Lab M, UK), and Voges–Proskauer (VP, Lab M, UK) 
tests. Species were identification according to FDA bacteriological 
analytical manual (US-FDA, 2007). Further identification was 
done using API 20E diagnostic strips (Biomérieu, Marcy, France). 

E. coli O157:H7 confirmed serologically using O157 and H7 
antisera by direct agglutination tests. 

Pre-enrichment culture (1 ml) were transferred into tetrathionate 
broth (TT, Lab M, UK) and incubated at 37℃ for 24 h for 
Salmonella spp. isolation and identification. Culture were streaked 
onto Xylose lysine deoxycholate agar (XLD, Lab M, UK) and 
incubated at 37℃ for 24 h. Red colonies with black center from 
XLD media were selected and streaked on trypticase soy agar 
slants (TSA, Lab M, UK). After incubation bacteria were subjected 
to biochemical tests: indole, citrate, triple sugar iron (TSI, Lab 
M, UK), urease (Lab M, UK), and identification with API 20E 
diagnostic strips as described in published reports (Food and Drug 
Administration, [18,23,24].

Colonies of different characteristics of shape, size, and color 
were selected randomly from plate count agar and incubated on 
additional Trypticase soy agar (TSA, Lab M, UK) slants. All 
the purified isolates were observed for Gram staining and cell 
morphology. The isolates were then identified biochemically with 
indole kovac’s reagent, Simmon citrate agar, MR, VP tests, triple 
sugar iron (TSI, Lab M, UK), and H2S production for identification 
to genus or species level in parallel, the commercial API 20E strips 
were also used [25].

Identification by PCR and 16S rRNA gene sequencing
Randomly selected samples were used for this technique either 
for confirmation of API results or for identification of unknown 
samples. The technique was performed according to Azwai1 
et al. [26]. DNA extraction was done using bacterial DNA 
preparation kit (Jena Bioscience, Thuringia, Germany). Partial 
16S rDNA was amplified using the universal oligonucleotides 
primers forward 5′-GAGTTTGATCCTGGCTTAG-3′ and reverse 
5′-GGTTACCTTGTTACGACTT-3′. Briefly, 2 µl DNA templates 
(20 ng/ µl) was added to 12.5 µl Master Mix (Qiagen, Hilden, 
Germany) and 10.5 µl deionized H2O for a total volume of 25 µl. 
The mixture was then amplified in a DNA Thermal Cycler (Techne 
Progene, Marshall Scientific, Hampton, NH) using the following 
program: one denaturation step at 94°C for 5 min; 37 cycles (30s 
at 94ºC, 30s at 51ºC, and 30s at 72ºC); and a final extension for 5 
min at 72ºC. Gel analysis of the PCR products were performed by 
gel electrophoresis using 1.5% Agarose gel with 1X Tris-acetate-
EDTA (TAE) buffer. 

DNA Sequencing
QIA-quick Kit (Qiagen, Hilden, Germany), was used for 
purification of the PCR products. Second PCR was performed 
using BigDye Terminator v3.1 Cycle Sequencing Kit. Each 
reaction (20 μL) contained a terminator ready reaction mix (8 
μL), Primer (3.2 pmol), DNA template quantized according to the 
PCR product size, and deionized water. Thermal profile for Cycle 
Sequencing PCR was 1 min at 96ºC; 25ºC cycles as follows: 10 s 
at 96ºC, 5 s at 50ºC, and 4 min at 60ºC. After an additional step of 
purification with CENTRI-SEP Columns (Princeton Separations, 
Freehold, NJ), DNA sequencing was carried out by 3500 Genetic 
Analyzer (Applied Biosystems, Massachusetts, USA). The 
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obtained consensus sequences were subjected to BLAST search 
through the Mega program (7.0.20) [27,28].

Results and Discussion
Quantitative estimation of aerobic bacteria in tilapia fish samples 
were estimated 5.6 ± 0.8 logs CFU/g. The total aerobic count 
were within the acceptable limits compared to the Egyptian 
Organization for Standardization, EOS (<106 CFU/g, EOS, 2005). 
Still, the bacterial load in all samples was high and one of the 
reasons may be that the high temperature as fish were collected in 
summer where temperature range from 30-35℃. This temperature 
was reflected on the water environment to be close to optimum for 
many mesophilic bacteria, and increase the bacterial load in fish 
[29]. In agreement with this results, tilapia (Oreochromis niloticus) 
were reported associated with high total bacterial count isolated 
from fish surface coming from the northern region of Costa Rica, 
and up to 27.3 x 108 CFU/g sold at Sokoto Central Market in 
Sokoto, Nigeria [30,31] reported even higher bacterial load (5.5 x 
109 CFU/g) of tilapia fish than this study. The high bacterial count 
on the skin might be due to contamination by original aquatic 
species as well as commodity contamination during handling.

E.coli isolates (4/50, 8%) has been recovered from this study, and 
only one isolate (1/50, 2%) was identified as E. coli O157:H7 
(Figure 1). E. coli O157:H7 was isolated and identified as gram 
negative sorbitol non fermenting colonies on SMAC plates. 
Isolates were confirmed by biochemical tests listed in table 1, 
and by using serological agglutination test against O157, and 
H7 specific antisera. For further confirmation, E.coli isolate was 
identified by PCR and 16S rDNA gene sequencing. The nucleotide 
sequence of Escherichia coli O157: H7 Ras4 has been submitted to 
the GenBank with accession number KY120324, and represented 
in a phylogenic tree in Figure 2. E.coli O157:H7 is not commonly 
reported associated with fish and seafood. E. coli were isolated 
in 414/484 finfish samples in India but typical E. coli O157 was 
absent, however MUG and sorbitol-negative strains were reported. 
Thampuran et al [32] concluded that, this result might suggest the 
existence of the strain. On the other hand, Surendraraj et al. [33] 
recovered E. coli O157:H7 from shellfish in seafood markets in 
India. Seven standard E. coli O157:H7 were identified and one 
shrimp sample was positive for 3 virulence markers. Another 
study conducted on Nile tilapia (Oreochromis niloticus) fish 
skin, gastrointestinal tract, and muscles from pay-to-fish ponds 
located in at the Córrego Rico watershed in São Paulo, Brazil 
isolates. Eight from 96 totals E. coli isolates (6.95%) from the fish 
gastrointestinal tract contained O157 gene, but E. coli O157 was 
not reported on fish skin [34]. Shiga toxin-producing Escherichia 
coli (STEC) O157 were reported recovered from processed salmon 
roe which had been a suspected food item in sporadic infections 
occurred in Japan, 1998 [35].

Wang and Doyle [36] reported that E. coli O157 can survive in 
water for several weeks. Therefore, faecal contamination of water 
sources or aquaculture environments by E. coli O157 can act as a 
vehicle of transmission of diarrheagenic enteric infections. Water 
supplies were reported contaminated by E. coli O157 in Brazil and 

Scotland [37,38]. This may suggests that fish contamination may 
originate from bovine faeces, probably from the surrounding to 
aquaculture water. E. coli bacteria that can cause human diseases 
do not cause losses in aquaculture production. Therefore, fish 
farmers not feel the need to apply appropriate health control 
measures to ensure product quality. However, infected fish used as 
a food source can serve as means of transmission of these agents 
to humans. Therefore, good hygienic handling measures and 
proper processing are needed before consumption of fish products.

Figure 1: Number of occurrence of bacteria isolated from fresh-water 
acquaculture tilapia (Oreochromis niloticus) fish.

Figure 2: Phylogenic tree represented sequenced Escherichia coli O157: 
H7 Ras4 (GenBank accession number KY120324).

Salmonella spp. (1/50, 2%) was isolated and identified in this study 
(Figure 1). Isolates were gram negative black centered colonies 
on XLD media. Selected colonies were tested by indole, citrate, 
MR, VP, urease, and TSI biochemical tests and identified with API 
20E as Salmonella enterica as listed in table 1. Salmonella causes 
foodborne illness associated with dehydration, reactive arthritis, 
septicemia, and can lead to death [39]. Therefore, Food safety 
standards have demanded the absence of Salmonella in chilled fresh 
fish [40]. Salmonella could be introduced to the aquatic system 
through many ways such as poor sanitation, inappropriate disposal 
of human and animal wastes [41]. The presence of Salmonella 
enterica in the present study suggested the existence of poor 
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hygienic measures and better control and monitoring is required. 

Ellermeier and Slauch [42] revealed that cold-blooded animals 
such as tilapia by themselves are potential hosts for Salmonella 
species. Salmonella have been reported associated with tilapia 
fish in several studies. Different Salmonella serovars (S. 
Corvallis, S. Bovis-mobificans, S. Agona, S. Mikawashima, and S. 
Typhimurium) were isolated from tilapia (14/32, 43.8%) obtained 
from wet markets in Malaysia [43]. Salmonella spp. were found in 
fish mucus (20.0%) of a total of 20 tilapia. Salmonella spp. were 
reported in raw retail frozen imported fresh-water tilapia fish to 
eastern province of Saudi Arabia 64% (16/25) from Thailand, and 
28% (14/50) from India [44]. Similar results to this study were 
revealed with fresh tilapia fish (Oreochromis niloticus) in Sokoto, 
Nigeria. Salmonella spp. Showed the least frequency of occurrence 
(1/31, 3.22%) [45]. 

Several bacteria isolated in this study have the potential of 
histamine formation. These bacteria include Morganella morganii 
(4/50, 8%), Proteus mirabilis (5/50, 10%), Proteus vulgaris 
(3/50, 6%), Hafnia alvei (4/50, 8%), Aeromonas hydrophila 
(1/50, 2%), Photobacterium damaselae (4/50, 8%), Enterobacter 
cloacae (6/50, 12%), and Enterobacter cancerogenus (5/50, 10%) 
(Figure1). All isolates were confirmed by biochemical tests listed 
in table 1, and for further confirmation, Morganella morganii 
isolate was identified by PCR and 16S rDNA gene sequencing. 
The nucleotide sequence of Morganella morganii Ras1 has been 
submitted to the GenBank with accession number (KY120325), 
and represented in a phylogenic tree in Figure 3. Same confirmation 
was done with Proteus mirabilis isolate, as it was identified by 
PCR and 16S rDNA gene sequencing. The nucleotide sequence of 
Proteus mirabilis Ras2 has been submitted to the GenBank with 
accession number (KY120326), and represented in a phylogenic 
tree in Figure 4.

Figure 3: Phylogenic tree represented sequenced Morganella morganii 
Ras1 (GenBank accession number KY120325).

Histamine production is associated with scombroid poisoning, and 
its toxicity is enhanced by the presence of other biogenic amines 
in foods. Histamine is formed by decarboxylation of histidine, 
which is found at high levels in muscles of fish belonging to the 
Scombroidae family [46,47]. It generally results from proliferation 
of histamine producing bacteria, which possess histidine 

decarboxylase. Enterobacteriaceae has been reported to be the most 
important histamine-producing bacteria in fish [48]. M. morganii, 
Proteus app., and Hafnia alvei are considered proliferating 
histamine forming bacteria and the quantity of histamine produced 
is varied among species [49-52] reported Photobacterium spp. and 
Aeromonas spp. as histamine producers. Tilapia did not belong to 
the Scombroidae family, but all food rich in protein are susceptible 
for histamine and other biogenic amines formation when desirable 
conditions are present for the microorganism [53]. Histamine 
was estimated in 52 tilapia fish in Bahir Dar town, Ethiopia. 
Mean level of histamine detected was between 3.8-290 mg/100 g, 
which exceed the accepted limit of histamine established by EU 
regulation and could cause histamine toxicity [54].

Figure 4: Phylogenic tree represented sequenced Proteus mirabilis Ras2 
(GenBank accession number KY120326).

Bacteria isolated in this study associated with different 
complications that might affect the public health. P. mirabilis 
becomes an opportunistic pathogen where it causes urinary 
tract infections and other types of nosocomial infections [55]. 
Hafnia alvei reported associated with persistent septicemia [56]. 
According to Kirov [57,58]. Aeromonas spp. are pathogens 
which can cause bacteraemia, meningitis, pulmonary and wound 
infections. It might cause ‘‘summer-diarrhoea’’, which is a 
worldwide problem in children under five years old, the elderly, 
and travellers. Photobacterium damaselae was associated with 
infection after digestion of raw seafood, and urinary tract infection 
after exposure to contaminated water [59]. It was diagnosed with 
septicemia and hepatic dysfunction in a cirrhotic patient after 
ingestion of seafood [60]. Photobacterium damsel isolation from 
cultured fish with high economic value has made the bacterium as 
concern in aquaculture industry. Abdel-Aziz et al [61] identified 
Photobacterium damsel during mass mortalities of cultured 
seabream and European seabass in Egypt. Enterobacter cloacae 
are gram negative bacteria, can cause wound, respiratory and 
urinary tract infections. It is considered major human pathogen 
responsible for large outbreaks of nosocomial disease [62,63]. 
Enterobacter cancerogenus was associated with septicemia and 
wound infection especially with persons exposed to the organism 
during traumatic events [64]. 
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Morganella 
morganii

Proteus 
mirabilis

Proteus 
vulgaris

E. 
coli

Salmonella
enterica

Enterobacter
 cloacae

Enterobacter
cancerogenus

Hafnia
alvei

Aeromonas
hydrophila

Photobacterium
damaselae

ONPG - - - + + + + + + -

Arginine dihydrolase - - - + - + - - + +

Lysine decarboxylase - - - + - - - + + -

Ornithine decarboxylase + + - - + + - + - -

Citrate - + - - + + + + - -

H 2S - + + - + - - - - -

Urease + + + - + - - - - +

TDA + + + - - - - - - -

Indole + - + + + - - - - -

Voges-Proskauer + - - - - + + + + -

Gelatinase - + - - - - - - + -

Acid 
from:

glucose + + + + + + + + + +

Mannitol + - - + + + + + + -

Inositol - - - - - - - - - -

Sorbitol - - - + + + - - - -

Rhamnose - - + + + + + + - -

sucrose - - + + + + - - + -

Melibiose - - - + + + - - - -

Amylose - - - - + + + - - -

arabinose - - - + + + + + - -

Table 1: Biochemical test results of different isolated bacteria using API 20E diagnostic strips.

In conclusion, this research has indicated that the bacterial species 
associated with fresh aquaculture Tilapia fish and has shown that 
they are potentially pathogenic to humans. Therefore, adequate 
measures should be taken in handling and processing this wide 
distributed fish before consumption.
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