The Role of Genes Enzymes Xenobiotics in The Mechanisms of Formation of Heavy Severity Level of Allergic Diseases in Uzbekistan

Mavlyanova Sh.Z1, Boboev K.T2, Gulyamova. G.Sh1, Djabbarov M1 and Atadjanov Sh.Yu1

1Republic Specialized Scientific-Practical Medical Centre of Republican specialized scientific-practical medical center of dermatovenerology and cosmetology of the Ministry of Health of the Republic of Uzbekistan.

2Scientific research institute of Haematology and blood transfusion of MinH of the Republic of Uzbekistan.

Correspondence: Mavlyanova Shakhnoza Zakirovna, Doctor of Medical Sciences, Head of Dermatology Republic Specialised Scientific, Practical Medical Centre of Republican specialized scientific, Practical Medical Center of Dermatovenereology and Cosmetology, Tel: +998901885779; E-mail: shahnoza_m@mail.ru.

Received: 05 May 2018; Accepted: 28 May 2019

Keywords

Allergic skin diseases, Genes of enzymes of biotransformation of xenobiotics, Gene polymorphism, Clinic.

Allergic dermatosis occupies one of the leading places in structure of the general disease of a skin and hypodermic cellular tissue and makes 56.2 \% among skin diseases \cite{1,2,5,13}. On the basis of formation of allergic dermatosis lays interaction of various genetic factors with environmental factors \cite{3,4,6-10,12}. One of the effective approaches to studying of mechanisms of allergic dermatosis development is connected with research of the genes, products which can be expressly or by implication involved in development of the given pathology \cite{11,17-22}.

The purpose of our researches is the studying of polymorphism of genes of enzymes of biotransformation of xenobiotics in patients with allergic skin diseases.

Material and Research Methods

Object and subject of research were the patients with allergic dermatosis (AID), samples of DNA of sick and healthy donors, gluten transfusion genes GSTM1 (1p13.3), GSTT1 (22q11.2) and Ile 105Val genes of the GSTP1 gene were the object and subject of the study. The study included 88 patients with AID age ranging from 5 to 67 years. Of these, 41 are women, 50 are men. The diagnosis in all patients is confirmed by the results of the clinical examination and laboratory researches.

All patients were surveyed, observed and passed treatment in branch of dermatology Medical Centre of Dermatovenereology and carried out molecular-genetic inspection of biomaterials on the basis of department of molecular medicine and cellular technologies of scientific research institute of haematology and blood transfusion of MinH of the Republic of Uzbekistan.

Figure 1: Electric phoregramme of genes detection GSTM1 and GSTT1 (459 items h. – gene GSTT1, 375 items h. – β - γξθν, 213 o. ν. – GSTM1).
Figure 2: Detection of (A/G) gene polymorphism of glutathione S-transferase P1 (rs-1) mutation -1: K - negative control; K+ positive control; 1,3,8,9 – wild type A/A; 2,4,5,6,7,10 – heterozygous genotype A/G.

At carrying out of genetic researches as comparison group population control was used, which has been presented by samples of DNA (n=72) conditionally healthy donors (without any signs of atopic diseases) from bank of DNA of the given department.

The statistical analysis of results is spent with use of a package of statistical programs «OpenEpi 2009, Version 2.3».

Results of Research

On age aspect patients with AID up to 14 years old have made – 13, 15-20-year olds – 12, 21-30 – 17, 31-40-year olds – 12, 41-50 – 10 and over 50 years old – 24 patients. Under the clinical form allergic dermatosis has been diagnosed accordingly among 88 patients, 49 patients with atopic dermatitis, 28 patients with nettle rush, 11 patients with allergic dermatitis. Taking into account index DIShS moderate severity level is diagnosed for 10 patients (22,4 ± 0,5 point) diseases.

The obtained data testifies that deletional polymorphisms GSTM1 «0/0» in 38,8 % of cases and GSTT1 0/0 = 22,4 % of cases basically met in patients from heavy severity level (29,3 ± 0,5 point) diseases.

As follows from the figure, frequency of functional and zero genotypes GSTM1 and GSTT1 in group of patients with AID following features are revealed. So, in patients with AID frequency functional GSTT1 +/+ a genotype in 1,01 times was less in comparison with indicators control healthy group and has made 73.9% in comparison with control healthy group, against 75.0% accordingly. Whereas frequency of zero genotypes GSTT10/0 in group of patients with AID has made 26.1%, that in 1,1 times was above in comparison with indicators of the healthy faces, however the obtained given indicators did not reach level of statistically significant indicators (χ²=0.03; P=0.9; OR=1.1; 95% CI0. 0.519 2.169).

Table 1: Sequence of oligonucleotides primers used for carrying out PCR.

<table>
<thead>
<tr>
<th>№</th>
<th>Gene, localisation</th>
<th>Polymorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GSTM1 (1p13.3)</td>
<td>deletion</td>
</tr>
<tr>
<td>2</td>
<td>GSTT1 (22q11.2)</td>
<td>deletion</td>
</tr>
<tr>
<td>3</td>
<td>GSTP1 (11q13)</td>
<td>deletion</td>
</tr>
</tbody>
</table>

Table 2: Distribution frequency of alleles and polymorphism genotypes del/del genes GSTM1 and GSTT1 in groups of patients and the control.

<table>
<thead>
<tr>
<th>№</th>
<th>Groups</th>
<th>Frequency of distribution of genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GSTM1 a+/a</td>
<td>GSTM1 (0/0)</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>The basic group N=88</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>Contr. Group n=72</td>
<td>46</td>
</tr>
</tbody>
</table>

Table 2: Distribution frequency of alleles and polymorphism genotypes del/del genes GSTM1 and GSTT1 in groups of patients and the control. n-number of the surveyed patients; *n - number of the investigated chromosomes.

Table 2: Distribution frequency of alleles and polymorphism genotypes del/del genes GSTM1 and GSTT1 in groups of patients and the control. n-number of the surveyed patients; *n - number of the investigated chromosomes.

As follows from the figure, frequency of functional and zero genotypes GSTM1 and GSTT1 most often came to light in patients with heavy and moderate severity level. Thus, it is necessary to notice, that in patients with AID frequency not functional genotype GSTM1 «0/0» in 1,1 times was above in comparison with the individuals, having functional GSTM1 «+/+» a genotype. (OR=1.1; 95% CI0). However, calculation of frequencies of distribution of zero genotypes of gene GSTM1 between patients of AID (the basic group) and the control has shown, statistically not significant distinctions (χ²=0.3; Π =0.1).

At the analysis of frequency of genotypes GSTT1 in group of patients with AID following features are revealed. So, in patients with AID frequency functional GSTT1 +/+ a genotype in 1,01 times was less in comparison with indicators control healthy group and has made 73.9% in comparison with control healthy group, against 75.0% accordingly. Whereas frequency of zero genotypes GSTT10/0 in group of patients with AID has made 26.1%, that in 1,1 times was above in comparison with indicators of the healthy faces, however the obtained given indicators did not reach level of statistically significant indicators (χ²=0.03; P=0.9; OR=1.1; 95% CI0. 0.519 2.169).

Table 3: Distribution frequency of alleles and polymorphism genotypes del/del genes GSTM1 and GSTT1 in groups of patients and the control.

As follows from the figure, frequency of functional and zero genotypes GSTM1 and GSTT1 most often came to light in patients with heavy and moderate severity level. Thus, it is necessary to notice, that in patients with AID frequency not functional genotype GSTM1 «0/0» in 1,1 times was above in comparison with the individuals, having functional GSTM1 «+/+» a genotype. (OR=1.1; 95% CI0). However, calculation of frequencies of distribution of zero genotypes of gene GSTM1 between patients of AID (the basic group) and the control has shown, statistically not significant distinctions (χ²=0.3; Π =0.1).

At the analysis of frequency of genotypes GSTT1 in group of patients with AID following features are revealed. So, in patients with AID frequency functional GSTT1 +/+ a genotype in 1,01 times was less in comparison with indicators control healthy group and has made 73.9% in comparison with control healthy group, against 75.0% accordingly. Whereas frequency of zero genotypes GSTT10/0 in group of patients with AID has made 26.1%, that in 1,1 times was above in comparison with indicators of the healthy faces, however the obtained given indicators did not reach level of statistically significant indicators (χ²=0.03; P=0.9; OR=1.1; 95% CI0. 0.519 2.169).

So, frequency studying of alleles and genotypes of genes FBC taking into account severity level of allergic dermatosis drew the following features (Figure 3).

As follows from the figure, frequency of functional and zero genotypes GSTM1 and GSTT1 most often came to light in patients with heavy and moderate severity level. Thus, it is necessary to notice, that in patients with AID frequency not functional genotype GSTM1 «0/0» in 1,1 times was above in comparison with the individuals, having functional GSTM1 «+/+» a genotype. (OR=1.1; 95% CI0). However, calculation of frequencies of distribution of zero genotypes of gene GSTM1 between patients of AID (the basic group) and the control has shown, statistically not significant distinctions (χ²=0.3; Π =0.1).

The obtained data testifies that deletional polymorphisms GSTM1 and GSTT1 can be independent markers of the raised risk of development of heavy severity level of AID.

Table 1: Sequence of oligonucleotides primers used for carrying out PCR.

<table>
<thead>
<tr>
<th>№</th>
<th>Gene, localisation</th>
<th>Polymorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GSTM1 (1p13.3)</td>
<td>deletion</td>
</tr>
<tr>
<td>2</td>
<td>GSTT1 (22q11.2)</td>
<td>deletion</td>
</tr>
<tr>
<td>3</td>
<td>GSTP1 (11q13)</td>
<td>deletion</td>
</tr>
</tbody>
</table>

Table 1: Sequence of oligonucleotides primers used for carrying out PCR.
The frequency of the distribution of genotypes by RCS IIe 105 Val polymorphism of the GSTP1 gene in the main group of patients with ALD showed that the observed frequency of A / A genotypes was found in 47.7%, heterozygous A / G genotypes - 39.7% and homozygous - G / G - 13.6%, respectively, whereas the expected frequency of the genotypes of group A / A and heterozygous - were 44.9 and 44.2%, respectively, and G / G - in 10.8% of cases.

While in the control group of healthy individuals, the observed and expected frequency of A / G heterozygous genotypes was found in 19.4% and 19.7% of cases, and homozygous non-functional G / G genotypes in 1.4 and 1.2%, respectively.

While the frequency distribution of the occurrence of alleles and genotypes of GSTP1 in the group of patients with allergodermatosis, in comparison with the control group, significant differences were found. The functionally unfavorable allele G of the GSTP1 gene was 3.4 times statistically significantly more prevalent in the studied chromosomes of allergic dermatoses than in the population sample ($\chi^2 = 10.8; P <0.05; OR = 3.4; 95\%CI 1.6- 7.4$).

The associations of "functionally unfavorable" A / G genotypes were identified ($\chi^2 = 6.9; P <0.05; OR = 2.6; 95\%CI 1.264-5.382$) and G / G ($\chi^2 = 8.0; P <0.05; OR = 11.2; 95\%CI 1.421-88.43$) with the development of allergic dermatoses.

Table 3: Frequency distribution of combined genotypes of deletional polymorphisms genes GSTM1 and GSTT1 in the investigated groups.

<table>
<thead>
<tr>
<th>№</th>
<th>Groups</th>
<th>Allele frequency</th>
<th>Frequency distribution of genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1.</td>
<td>The basic group n=88</td>
<td>118</td>
<td>67.0</td>
</tr>
<tr>
<td>2</td>
<td>Contr. Group n=72</td>
<td>126</td>
<td>87.5</td>
</tr>
</tbody>
</table>

Table 4: The distribution frequency of alleles and genotypes of IIe 105 Val polymorphism of the GSTP1 gene in groups of patients and controls.

<table>
<thead>
<tr>
<th>Alleles and genotypes</th>
<th>The number of examined alleles and genotypes</th>
<th>Statistical difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allel A</td>
<td>Основная группа</td>
<td>Контроль</td>
</tr>
<tr>
<td>Allel G</td>
<td>118</td>
<td>126</td>
</tr>
<tr>
<td>genotyp A/A</td>
<td>41</td>
<td>57</td>
</tr>
<tr>
<td>genotyp A/G</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>genotyp G/G</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5: Differences in the frequency of occurrence of alleles and genotypes of IIe 105 Val polymorphism of the GSTP1 gene in the main and control groups.

Conclusion

Thus, results of research have shown, that in patients with allergic dermatosis the raised frequency of combined zero genotypes (GSTM10/0 + GSTT10/0) in comparison with population sample (6.8% and 4.1 % accordingly) is marked. The obtained data testifies that in Uzbekistan individuals with combined zero genotypes of genes enzymes xenobiotics GSTM1 and GSTT1 have a tendency to risk of development of allergic dermatosis heavy severity level.

Whereas, the G allele and hetero / homozygous genotypes of Ile 105 Val polymorphism of the GSTP1 gene are significant markers of an increased risk of developing allergic skin diseases in Uzbekistan ($P<0.05$). Allele A and the functionally favorable A / A genotype are reliable protective markers for the development of pathology ($\chi^2 = 16.5; P<0.05; OR = 0.2; 95\%CI 0.1186-0.4868$).

References

7. Bragin EY. Comparative analysis of structure hereditary components of susceptibility to a bronchial asthma and tuberculosis on genes of enzymes of a metabolism xenobiotics: Avtores. dis..... Medical sciences. Tomsk, 2005; 23.

