Two Episodes of Retrograde Jejunogastric and Jejunjejunal Intussusceptions as a Complication of Gastrostomy Tube in a Child: A Case Report

Sakulsansern Kwanhathai MD1, Tunruttanakul Suppadech MD2, Ruangwattanapaisarn Nichanan MD3, and Sritippho Nopporn MD4

1Division of Pediatric Surgery, Department of Surgery, Sawan Pracharak Hospital, Nakhon Sawan, Thailand.
2Division of General Surgery, Department of Surgery, Sawan Pracharak Hospital, Nakhon Sawan, Thailand.
3Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
4Division of Pediatric Surgery, Department of Surgery, Sawan Pracharak Hospital, Nakhon Sawan, Thailand.

Correspondence:
Sritippho Nopporn, Division of Pediatric Surgery, Department of Surgery, Sawan Pracharak Hospital, Nakhon Sawan, 60000, Thailand, Tel: (66)56 219-888; Fax: (66)56 219-899; E-mail: sritippo4644@gmail.com.

Received: 03 March 2019; Accepted: 14 April 2019

ABSTRACT
Gastrostomy tubes are frequently used to provide enteral access in some pediatric patients. Serious long-term complications are rare. The case-report here is a 12 years-old neurologically impaired child who had gastrostomy done for pharyngeal incoordination, presented eight years later with intestinal obstruction and upper gastrointestinal bleeding. Various imaging modalities were utilized and showed a retrograde jejuno-gastric intussusception around the gastrostomy tube. Six days after laparotomy and manual reduction, a perforated recurrent jejuno-jejunal intussusception occurred. Series of subsequent interventions were followed. This report aims to raise awareness of this uncommon but potential lethal complication concurrently with a discussion on diagnosis and management. We also provided a set of associated and useful imaging which is the important diagnostic tool.

Keywords
Intussusception, Retrograde jejunogastric intussusception, Gastrostomy tube.

Introduction
Gastrostomy tubes are frequently used to provide enteral access in many pediatric conditions, such as pharyngeal incoordination, neurologic disorders, chronic malnutrition, or other surgical and traumatic etiologies. Long-term complications are usually minor and include ulceration of surrounding skin, clogging of the feeding tube, and inadvertent dislodgment. Severe or life-threatening long-term complications are rare [1].

The first case of intussusception secondary to a gastrostomy tube was a two years old child reported by Haws et al. in 1996 [4]. The intussusception involved entire duodenum, jejunum and most of the ileum [4]. Jejunogastric intussusception is the event which jejunum serves as the intussusceptum, and stomach is the intussuscipiens. Three following case-report further demonstrated infants and children who developed bowel obstruction secondary to intussusception with a gastrostomy feeding tube as the leading point [2-4]. We present a rare but life-threatening complication from a long-term indwelling of gastrostomy tube. Furthermore, to our knowledge, there has never been a case suffered from early recurrent episodes.

Case Report
Patient and History
A twelve years old boy with neurological impairment secondary to birth asphyxia had undergone gastrostomy for pharyngeal incoordination at the age of four years. He presented with bilious vomiting and history of coffee ground emesis for one day prior to admission. The parent also recognized that there was some amount
of bile came out from the tube and leaked around it. Patient once had a history of the tube migration into stomach and pulmonary aspiration.

On physical examination, the child was drowsy, tachypnea and mild dehydrated. The abdomen was scaphoid. Clinically, we suspected gastric outlet obstruction secondary to migrated tube and aspiration pneumonia. We revised the tube tip position expecting to locate in the stomach, concurrently with fluid resuscitation and administration of intravenous antibiotics.

The patient’s condition was not improved over the next two hours and the bile drainage from gastrostomy tube was increase up to 500 cc. The abdomen was still flat.

Imaging findings
Plain abdominal radiography was performed (Figure 1) and demonstrated a large well-defined intraluminal soft tissue density mass in the dilated stomach near the tip of the gastrostomy tube.

![Figure 1: AP supine abdominal film shows a large well-defined intraluminal soft tissue density mass in the dilated stomach near the tip of the gastrostomy tube.](image)

For confirmation and diagnosis of the large gastric mass, abdominal ultrasound was promptly performed. The study showed a complex soft tissue mass surrounding the gastrostomy tube (Figure 2 A, B).

![Figure 2: Sonographic images (A) show a soft tissue mass surrounding the gastrostomy tube (arrows in B).](image)

The finding was confirmed by a subsequent CT scan of the abdomen (Figure 3 A, B).
jejuno-jejunal intussusception, presented with clinical peritonitis. Plain abdominal radiography was shown in Figure 5.

![Figure 5](image5.png)

Surgical treatment
Urgent operative intervention was then decided. The incision was an extension of the upper-midline abdomen scar from the previous gastrostomy operation. The mass was identified as retrograde jejuno-gastric intussusception around antral area and mobilized through the surgical incision. The incarcerated intussuscepted part of small bowel was manually reduced and associated venous congestion resolved after a short observation period (Figure 4).

![Figure 4](image4.png)

An unexpected postoperative course occurred on day six with jejuno-jejunal intussusception, presented with clinical peritonitis. Emergency exploratory laparotomy was then performed, and detected jejunojejunal intussusception on the proximal jejunum. Additional findings were strangulation and multiple perforation of intussuscepted jejunal segment with the most proximal perforated site located close to duodeno-jejunal (DJ) junction (Figure 6). According to the previous findings, around 21-cm jejunal segment was resected, proximal jejunal stump was closed, gastrojejunostomy was constructed and both feeding jejunostomy and gastrostomy were created.

Post-operatively, the patient was returned to the pediatric intensive care unit (ICU), fluid deprivation and electrolyte imbalance were corrected following with initiating of total parenteral nutrition.

Pathological study revealed transmural hemorrhagic infarction with multiple perforation of jejunum, ranging from 0.5-2.0 centimeters in diameter. Few reactive hyperplasia lymph nodes are found in the periintestinal fat.

![Figure 6](image6.png)

Subsequently, fresh blood was detected from the gastrostomy.
catheters. With concerning over the proximal jejunal stump and anastomosis, an upper gastrointestinal (GI) study was performed by administrating diluted water-soluble contrast medium through gastrostomy tube. The fluoroscopic images show extraluminal contrast leakage from jejunal loop at left lateral aspect of the gastrojejunalostomy anastomotic site (Figure 7).

Figure 7: Upper GI study shows leakage of contrast media from the jejunum (arrow in A, B and C) at left lateral aspect of the gastrojejunalostomy anastomotic site.

Then gastroscopy was also performed, expected to locate bleeding, revealed a jejunal stump perforation with active bleeding (Figure 8).

Figure 8: Jejunal stump perforation and active bleeding captured by endoscopic examination.

In order to save the patient life, the third laparotomy was then attempted. Because leakage and bleeding jejunal stump was currently buried in inflammatory tissue near DJ junction, duodenal kocherization and releasing the ligament of Treitz were done to mobilize the stump and then primarily closed after debridement off unhealthy tissue. Gastrojejunalostomy was repaired. With concerning over the unhealthy duodenal stump, T-tube was inserted into bile duct aiming to divert bile off the anastomosis. Both gastrostomy and jejunostomy tubes were also in placed.

Figure 9: Placement of a T tube.

Figure 10: T-tube cholangiography was performed for confirmation of the T-tube position within the expected location of the biliary tree.

Operative outcomes
After the third operation, the patient has gradually recovered, was successfully discharged from ICU on day 30 and slowly able to tolerate enteral diet.

Post-operative follow-up
At 40-day follow-up, patient’s bowel movement has slowly improved without evidence of repeat obstruction. Unfortunately, few weeks later, the patient developed aspiration pneumonia following by sepsis and death.

Discussion
This case poses a clinical challenge of the unusual diagnosis of retrograde jejunogastric intussusception and its early recurrence in
Affected patients are often neurologically impaired, and may not be able to describe their symptoms. Vomiting, especially bilious, should raise concern of this potential complication. Otherwise, delay in recognition can lead to bowel necrosis and possible death [5].

Different theories have been proposed for intussusception caused by the placement of feeding tubes [6]:

1. The tip of the feeding tube can act as the leading point and drag the proximal segment over the distal segment during a peristaltic wave.
2. Retrograde peristalsis of the jejunum during episodes of vomiting.
3. The injecting force from the pump during feeding can also drag the bowel, causing intussusception.
4. Poorly built patients have reduced fatty tissue in the omentum and mesentery, which may allow the free movement of the bowel causing a predisposition to intussusception.
5. An increased caliber or longer length of the feeding used in the bowel segment may produce intussusception due to distal tip migration.
6. The Tip of the tube may cause local inflammation of the bowel wall resulting in a pseudopolyp which in-turn may act as a lead-point [4].

The possible mechanisms of our case’s first episode probably associated with distal tip and balloon migrated into small bowel causing vomiting from small bowel obstruction. The migrated balloon also served as the leading point to retrograde jejunal peristalsis. Moreover, the force from performing gastric lavage can also drag the bowel into stomach, retrograde jejunogastric intussusception was then occurred, as a result.

To our knowledge, this patient is the first reported case of the early recurrence of intussusception related to gastrostomy tube. The underlying theory of the mechanism is undoubtedly not available. We assume that early recurrence in this case probably due to the first episode causes bowel wall mucosal edema and inflammation. These can serve as the leading point for the second early recurrent episode.

Although computed tomography is highly sensitive for detecting intussusception, the diagnosis could be made reliably by ultrasound in the experienced hands, as in our case. Suggested initial management are first deflating the balloon and then, with gentle traction, pulling the tube and the balloon into the stomach [4]. If it is unsuccessful or the intussusception comprises a large segment, as seen in this case, surgical management should be performed.

Currently in conditions that long-term gastrostomy tube is needed, as in neurological impaired children, utilizing of gastrostomy-buttons is more preferred [4]. This self-retaining device has a one-way valve and a very short intraluminal portion within stomach, which is possible able to prevent some complications related to the conventional gastrostomy tubes.

We performed T tube drainage in order to divert bile off the friable duodenal stump with an acceptable outcome. One more appealing option for the difficult duodenal stump is performing pyloric exclusion [8]. However, with gastro-jejunostomy already constructed, the latter option may not be possible in the setting like us.

Conclusion
Although gastrostomy tubes are commonly utilized in patients with feeding problems and associated with low morbidity. Pediatric physicians should be aware of this potentially lethal complication. Early disease recurrence can occur. Patients still need to be closed monitored after successful former treatment, possibly until phase of edema and inflammation resolved. Early recognition and prompt management is the key for good outcome.

Acknowledgment
I am most grateful for Dr. Sani Molagool, Vice-Dean for Information Technology, Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand for all her help and providing me necessary suggestions.

References