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Introduction
Infectious diseases cause significant morbidity and mortality in 
populations worldwide [1]. The identification of the infectious 
agents is key to treating patients with infectious diseases by 
clinicians. A low detection rate has been established by conventional 
culture methodology, especially for microbes that require specific 
growth media. Thus, reaching a precision diagnosis through 
conventional methods has proven challenging. Although culture-
independent techniques such as serologic assays and nucleic acid 
amplification tests permit the identification of pathogens, these 
methods require a priori knowledge of desired targets, which often 
leads to impractically time consuming and sequential testing. In 
addition, novel pathogens are missed by these standard methods. 
Estimates implicated that up to 60% of infection cases were treated 
without the identification of the causative infectious agent after 
the application of standard testing [2]. The lack of a targeted and 

timely diagnosis impedes the utilization of precision antimicrobial 
treatment and overuse of unnecessary broad-spectrum antibiotics, 
causing antimicrobial resistance, and elevated healthcare costs.

In adults, urinary tract infections (UTIs) are the most common type 
of infection. The substantial clinical load of UTIs accounts for 1% 
of US clinical resources equaling more than $3.7 billion annually 
[3]. Worldwide, over 150 million people will develop a UTI in a 
given year. Women are affected by UTIs more frequently and a have 
a 50% chance of developing one at some point in their lives [4,5]. 
Although UTIs are more predominant in sexually actively young 
women, UTI risk also rises with age predisposing menopausal and 
elderly women as well. UTIs are caused by a number of bacteria 
and fungi, but frequent uropathogens include Escherichia coli, 
Klebsiella pneumoniae, Enterococcus faecalis, Candida albicans 
and Proteus mirabilis [6]. UTIs are assumed to be easily treated 
with antibiotic therapy, however, antibiotic resistance and allergy 
complications frequently hinder eradicating infections [6]. This 
leads to prolonged cycles of infection, known as recurrent UTI 
(rUTI), that reduce the quality of life [4]. Additionally, UTIs can 

ABSTRACT
We assessed the diagnostic yield of metagenomics urine sample testing in patients with urological symptoms. We 
conducted microbiome analysis of 86 female urine samples that included 17 healthy controls and 69 patients. Natural 
language processing (NLP), a subfield of artificial intelligence, was used to create a pathogen identification tool, 
Xplore-AI, to assess the potential pathogens in all of the samples. Meanwhile, report summaries that were written 
by infectious disease experts were compared to the NLP results to investigate its accuracy. The results showed 
that the NLP system reported 97% of patient samples had at least one pathogen over three standard deviations 
from values found in in healthy controls. Similarly, 84% of patients had two or more classified pathogens. These 
diagnostic percentages were consistent with the infectious disease expert summaries. However, some pathogens like 
Aerococcus urinae were present in 13 patient samples, but only reported in one summary. In conclusion, this study 
demonstrated the high diagnostic yield in females with urological symptoms following metagenomic analysis and the 
ability of using an NLP-based system to identify pathogens to improve the accuracy of the reportable species.

*Correspondence:
C Alexander Valencia, PhD, 45925 Horseshoe Drive, Suite 170, 
Sterling, VA 20166, E-mail: avalenci2001@gmail.com.

Received: 20 June 2021; Accepted: 28 July 2021

ISSN 2639-9458



Volume 5 | Issue 4 | 2 of 8Microbiol Infect Dis, 2021

affect the kidneys with serious consequences of pyelonephritis 
and life-threatening urosepsis. When refractory to antibiotic 
therapy, rUTI cases can last many years and potentially require a 
cystectomy [7]. Earlier and more comprehensive testing is required 
to aid doctors in circumventing these painful outcomes.

Unlike 16S/ITS sequencing, shotgun metagenomic sequencing 
(metagenomics) sequences all given genomic DNA from a sample, 
which permits unbiased result and is suitable for the elucidation 
of rare, novel, and atypical infectious agents. There is burgeoning 
interest about the application of metagenomics to infectious 
diseases as a diagnostic tool. Due to its sensitivity, speed, and 
cost-effectiveness, metagenomics may soon become a part of the 
standard diagnostic testing, thus replacing less comprehensive 
techniques such as culture and PCR-based methods [8]. Heretofore, 
metagenomics clinical applications have only been applied to 
case reports or small-scale cohort studies, with a focus pathogen 
detection from cerebrospinal fluid and plasma samples [9-12]. 
In addition to the microbe detection challenge, interpretation 
of metagenomics results are complex due to the large number 
of microbes that can be identified in a given sample based on a 
balance of environmental exposure and immune state, which 
demands further clinical contextual literature [12-16]. However, 
the thousands of microbes discoverable by metagenomics methods 
makes studying all surrounding literature manually a nearly 
impossible task [17].

Natural Language Processing, also known as NLP, is a branch 
of artificial intelligence and the intersection of linguistics and 
computer science. It generally started in the 1950s, and it has 
been quickly evolving during the past decades. Nowadays, many 
different classes of machine-learning algorithms have been applied 
to NLP tasks, such as feature learning and deep neural networks. 
NLP has been widely used in our daily lives, such chatbots and 
voice assistants, and healthcare is another promising field that 
NLP can help. People already started to use NLP at work such 
as clinical decision support, clinical trial matching and clinical 
documentation improvement. Several NLP-based tools that 
are focused on microbes have been built, such as Disbiome and 
AMRFinderPLUS, to link microbiome to disease and identify 
AMR genes [21,22]. Outside web searches, no freely available 
software is capable of determining microbe pathogenicity from 
PubMed literature.

In this study, we have assessed the diagnostic yield obtained by 
clinician reviews in contrast to Xplore-AI in clinical practice using 
consecutive unbiased urine samples utilizing metagenomics for 
broaden pathogen detection.

Methods
Samples and sequencing
Seventeen healthy female urine samples and 69 female patient 
urine samples were collected from the most recent consecutive 
samples. The average age of the patient group was 48 years of 
age with a standard deviation of 16. The age ranges had a normal 
distribution with a slight skew towards the older age range. Sixty-

one patients were from the United States with the second most 
common country being Canada at four patients. Control patients 
were all from the United States with a median age of 34 years 
of age ranging from 20-55. All subjects provided consent to 
participate in this study.

Urine DNA was isolated using the Quick-DNA Urine kit (Zymo 
Research, Irvine, CA), per the manufacturer’s instructions. 
Libraries were prepared using the KAPA HyperPlus Prep Kit 
(KAPA Biosystems, Wilmington, MA). Quality control and 
quantification of the samples was assessed by fluorometry using 
the Qubit 2.0 Fluorometer (Thermo Fischer, Waltham, MA). 
DNA Libraries were sequenced on the NextSeq 500 (Illumina, 
San Diego, CA) using paired-end reads (2x75 bp). The quality of 
raw sequencing reads was assessed using FastQC (v 0.11.8) and 
filtered according to the following rules: 1) reads with average 
quality score below 25 were discarded; 2) 5’ or 3’ regions with 
‘N’ or average quality score below 15 were trimmed; 3) trimmed 
reads with less than 35 bp were discarded and 4) low complexity 
reads were also discarded in the following analysis. All filtered 
sequencing data were run through Xplore-PATHO pipeline 
(Aperiomics, Inc., Sterling, VA), the proprietary software for 
alignment, genome binning, relative abundance recalculation, 
and evaluating hit confidence scores. The core algorithm has been 
used by previous studies involving Pathoscope 2.0 [22-25]. A 
minimal of 30 reads were required to be evenly distributed across 
the genome, and the identified species with less than 0.1% relative 
abundance were removed from further analysis.

Clinical reviewers searched for well cited uropathogens within the 
report first and compared them to internally run historic data of 
healthy controls to determine outliers to report as likely pathogens. 
Other microorganisms that were also outside of expected values but 
without supporting literature including circumstantially reported 
uropathogens were put into the possible pathogen category by 
clinical reviewers.

Pathogen identification
An NLP-based system, Xplore-AI, was built with the intent of aid 
in the determination of the pathogen status of microbes from the 
scientific and medical literature. The data used for the NLP pipeline 
included ~20 million PubMed abstract texts, ~230 pathogen/
infection terms (entities), ~300 symptom terms (entities), ~5000 
disease terms (entities), ~750 environment terms (entities), ~500 
antimicrobial terms (entities), ~140,000 microbe names (entities) 
and ~500 parse patterns (syntactic relationships between microbe 
and pathogen entities).

The PubMed abstracts were processed on the sentence level. 
Sentences were segmented by Spacy, and all sentences containing 
both infection and microbe terms as previously described were 
kept for further steps [18]. These sentences became “infection 
links” and were viewed as weak associations between the microbe 
and infection. An NLP method known as dependency parsing was 
then used on these links in order to find “verified infection links”, 
which had a stronger causal nature.
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Dependency parsing, included in the Spacy package, constructed a 
syntactic tree structure for the sentences. This method was used in 
conjunction with vetted parse patterns, syntactic patterns between 
the microbe and infection entities that were verified as implying 
a causal nature between the entities. Links for symptom, disease, 
environment, and antimicrobial entities were also generated, but 
not parsed.

A random forest classifier from scikit-learn was used to classify 
microbes as pathogenic or non-pathogenic solely from literature 
sources. The classifier was trained on a dataset of 143 known 
uropathogens and 33 known non-pathogens. The values used in 
feature construction were the total number of all entity links, the 
total number of “infection links”, and the total number of “verified 
infection links”. The ROC-AUC was used as a performance 
measure for the model and it achieved a score of 1.0, the highest 
score possible. In order to classify a microbe in a patient sample as 
being pathogenic the NLP pipeline was used in conjunction with 
the microbial abundance data of healthy controls. An abundance 
range was used in the determination and a microbe having an 
abundance of more than 3 standard deviations from healthy means 
or absent in healthy controls was considered significant. The 
method used to determine microbial pathogenicity in a sample can 
be seen in Figure 1.

Results
The average age of patients was 48 years old with a standard 
deviation of 16. The age ranges had a normal distribution with a 
slight skew towards the older age range. Sixty-one patient samples 

originated from the United States with the second most common 
four samples from Canada. Figure 2A showed that the most 
common clinical symptom category by organ system was Urinary 
Tract symptoms at 63.8% of patients reporting those symptoms 
and the second most common category was Other which included 
fever, malaise, and chills / sweats at 49.3% of patients. Similarly, 
Figure 2B showed the most common ICD-10 supported clinical 
suspicions. The top clinical suspicion reported by their doctors, 
based on ICD-10 codes N30-39, were UTI and cystitis at 37.7% 
of patients. The second most common finding showed that many 
patients without any sort of ICD-10 codes included international 
patients for a total of 18.8%. The next most common clinical 
suspicion, based on ICD-10 codes R10-19, was gastrointestinal 
disease at 14.5% of patients.

The report clinical reviewers, who have years of infectious 
microbial profiling post-graduate work, created summaries that 
found 79.7% of the patient samples represented likely infections, 
while 18.8% represented possible infections (Figure 3A). The NLP 
pipeline found important pathogens in every sample and 92.8% of 
patient samples were characterized by pathogenic polymicrobial 
communities (Figure 3B). Specifically, 59.4% of samples had five 
or more microbes classified as important pathogens by the NLP 
pipeline (Figure 3B). Overall, the ratios indicated that 98.6% of 
urinary samples had at least one article supporting a clinically 
relevant microorganism shown (Figure 3C). Comparing the 
clinical review findings with the NLP findings, it was uncovered 
that potentially important microbes were not being mentioned in 
the report summaries. It was found that each process favored a 

Figure 1: Flow diagram of NLP processing and curation. A. The structure of the database which started from a curated list of highly cited uropathogens 
compared with the abstracts of 20 million articles processed by NLP parsers for pathogenic clinical context. B. The general workflow used by NLP in 
binning microorganisms into a pathogen status.
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Figure 2: Clinical symptoms and diagnoses based on clinical suspicion using ICD-10 codes. A. The most common clinical symptoms grouped by organ 
system shown as the percentage of patients (n=67) with a cutoff of >5%. B. The most common suspected clinical diagnoses based on ICD-10 codes 
shown as the percentage of total patients (n=67) with a cutoff of >5%.

Figure 3: A). A graph showed the three categories of the clinical summaries. Infection was likely in samples with well-known uropathogens, it was 
possible in samples with less known uropathogens, and only 1.4% were in neither of these categories but had unusual urinary microbe abundances. B). 
This graph showed the percentage of the 69 patient samples that had at least n pathogenic species in them with either abundances more than 3 standard 
deviations from controls or no healthy control reference. C). This graph showed the number of species found important by the NLP pipeline that were 
missing from the clinical reviews. It should be noted that reviewers often left out species to be less important for brevity. D). Showed the number of 
pathogenic species cited in each group exclusively as well as the overlap species that both groups evaluated as pathogenic.
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Figure 4: A). Top 10 phylum indicated that the primary difference between controls and patients was due to Bacteroidetes and Proteobacteria. B). 
The top families brought higher resolution towards the phyla results indicating Staphylococcaceae, Streptococcaceae, Corynebacteriaceae, and 
various proteobacteria related bacteria as being particularly different between groups. C). The genera continued to highlight various Corynebacteria, 
proteobacteria, Staphylococcus spp., and Streptococcus spp. as being common in patients. D). A variety of viruses with a human host including the JC 
and BK polyomaviruses, papillomaviruses, and herpesviruses were observed. Various phages were present known. Graphs A-C excluded viruses to not 
skew Eukaryotic and Bacterial taxa abundances. The lines indicate the range of a <95% confidence interval.
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relatively distinct group of microbes with an overlap of only 45 
out of 216 pathogens (Figure 3D).

After a comparison the urine microbiomes from the patient and 
healthy populations, we plotted the representative microbe(s) 
means, from phyla to viral species, and their corresponding 
>95% confidence intervals on Figure 4. The confidence intervals 
showed proteobacteria as being associated with patients, and 
Bacteroidetes as being associated with controls. Consistently, 
the same grouping was shown at specific taxa such as family 
and genus levels (Figures 4B and 3C) These trends resulted in 
several taxa, such as Prevotella, being associated to controls and 
common uropathogens such as Streptococcus, Staphylococcus, 
and Escherichia being associated to patients. Almost all viruses 
seemed to be associated with patients as shown on Figure 4D.

Of the clinical reviewer highlighted pathogens not found as 
important by NLP, 40 were not classified as pathogens by the 
pipeline, 13 were not found in the NLP database, due to the 
limitation of the commercial PUBMED section, and five were 
classified as pathogens but their abundance was under the threshold 
of three standard deviations above standard healthy control means. 
Various Lactobacillus species, nine in total, were not identified as 
pathogens by the NLP pipeline, but were identified as being possibly 
or likely pathogenic by the clinical reviewers noting their sample 
abundance as being significantly higher than healthy controls.

Discussion
In this study, we conducted microbiome analysis of 86 female 
urine samples, that 17 healthy controls and 69 patients, obtained 
the diagnostic yield and evaluated a manual curation process, 
with clinical reviewers, and compared it to NLP-based analysis 
for the inclusion of relevant urinary tract pathogens on clinical 
reports (Figure 1). The focus was on female samples as multiple 
microbiome phenotypes have been well characterized in peer-
reviewed literature. Furthermore, urinary analyses were relatively 
simple as a sample type compared to fecal or oral microbiomes 
with a complexity on average being significantly lower. 
Moreover, existing literature was more easily available for the 
urinary tract and infection status. NLP was used for creation of 
a pathogen identification tool, Xplore-AI, to assess the potential 
pathogens in all the samples. Report summaries that were written 
by infectious disease experts were used to compare with the NLP 
result to investigate its accuracy. The results showed that the NLP 
system reported 97% of patient samples had at least one pathogen 
over three standard deviations from values found in in healthy 
controls. Similarly, 84% of patients had two or more classified 
pathogens. These diagnostic percentages were consistent with 
the infectious disease expert summaries. However, there were a 
number of uropathogens that only the NLP system identified. We 
demonstrated a high diagnostic yield in females with urological 
symptoms following metagenomic analysis and that NLP 
improved the accuracy of the reportable species.

The demographics of the female patient population was in 
the middle age range reflecting a higher prevalence of UTIs 

women over the age of 40 while demonstrating that UTIs can 
occur in women as young as 11. The cohort clinical information 
unsurprisingly demonstrated that a majority of the patients report 
some kind of urinary discomfort (Figure 2). Specifically, the 
ICD-10 codes for the traditional N30-39 urinary tract associated 
disorders were less than 50% of patients which can perhaps be 
explained by the fact that there are many different ICD-10 codes 
and many seem to describe the same organ system area. The 
gastrointestinal symptoms and suspected diagnoses seemed to 
support existing literature implicating the gut’s interrelatedness to 
seemingly separate organ system maladies [15,19,20].

Sequencing technologies are needed to permit the promise of 
personalized medicine to elucidate clinically actionable findings 
in urology. This study demonstrated the promising combination 
of two technologies, metagenomic sequencing and NLP, to assist 
urologists in obtaining a pathogen profile in patients with suspected 
UTIs. Metagenomic sequencing is the most extensive microbial 
detection method. The number of species and several phyla within 
our analysis strongly supported the position of the superior breadth 
of metagenomics. For example, species within the bacteroidetes 
and proteobacteria phyla were identified in patients with UTIs 
(Figure 4A). Similarly, species in several families and genera were 
significantly found in patients with UTIs, namely, prevotellaceae 
and Prevotella, respectively. Our analysis demonstrated the 
identification of less commonly tested for viruses including the 
human polyomavirus 1 and human polyomavirus 2 and supports 
a breadth of proteobacteria as being strongly associated with 
patients experiencing urinary tract discomfort and allodynia as 
indicated by past investigations into interstitial cystitis (Figure 4, 
Larsen et al. 2021, In Press). Moreover, various viruses such as 
certain polyomaviruses, herpesviruses, and papillomaviruses were 
also more likely to be found in IC/BPS patients. The powerful 
combination of utilization patient specific bacterial, fungal, and 
viral microbiome data supplemented by NLP curated literature and 
normal ranges provided the necessary information to identify key 
pathogens that may be responsible for the infection. Even though 
we have shown the application of this technology in urology, a 
similar approach may be used for other disciplines of medicine.

The types of microbes in this study supported a strong association 
between patients experiencing urinary tract discomfort, allodynia 
and proteobacteria as previously reported in patients with interstitial 
cystitis as well as the utilization of a clinical reviewer and NLP 
enhanced the species that were included on the clinical reports. In 
addition, viruses such as certain polyomaviruses, herpesviruses, 
and papillomaviruses were also found in IC/BPS patients (Figure 
4). A small fraction of the organisms identified by both the 
reviewers and NLP reinforce the most widely known uropathogens 
such as Candida spp., Pseudomonas aeruginosa, Klebsiella spp., 
Enterococcus spp., Proteus spp., and Herpes simplex virus spp [3]. 
Through metagenomics sequencing the number of species tested 
per sample greatly exceeded any other culture or RT-PCR-based 
UTI testing and had the potential to detect any one of the over 
40,000, as of November 2019, curated sequenced genomes. Lesser 
known uropathogen species were only detected by NLP. As an 
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example of how the system can enhance the clinician findings, 
several microbes that the NLP pipeline found to be important were 
not mentioned in any of the clinician summaries. Included in these 
microbes were Aerococcus urinae, Actinotignum schaalii, and 
Actinobaculum massiliense [25,26]. All of these have garnered 
recent attention for causing UTIs, but Aerococcus urinae especially 
has become a notable uropathogen and was present in 13 of the 69 
samples. The NLP pipeline was useful because it was difficult for 
clinical reviewers to both stay current with and remember all new 
literature associated with pathogenic microbes. The system was 
capable of mining the medical literature on a regular basis and 
updating a database that was digestible to the clinical reviewers 
for more accurate diagnostics, and paved the way for automated, 
machine learning-based diagnostics. This demonstrated how NLP 
can aid in the inclusion of lesser-known species more efficiently 
compared to reviewers. Infectious disease experts were essential 
in interpreting the results due to their background with the urinary 
microbiome. Though beneficial, there are clear limitations in an 
individual attempting to specialize in every species while keeping 
up to date on all the literature and normal ranges surrounding 
every microorganism. This knowledge gap is exacerbated when 
the species list is in the 50+ range on the clinical reports and 
literature is constantly changing. The comparison of the expert 
summaries to NLP species of interest showed the shortcomings 
of both systems on their own and why a synergistic relationship is 
necessary for enhanced accuracy as well as proper scaling for the 
anticipated widespread adoption of this technology.

While shotgun metagenomic technology is recent, research 
initiatives such as the Human Microbiome Project have already 
demonstrated clinical implications [21,22]. While our previous 
study looked at the clinical utility of using shotgun metagenomics 
in UTI diagnosis, the novelty of this study lies in a state-of-
the-art NLP pipeline tailored towards tying together clinical 
symptoms, diseases, and body location to species and genera 
(Figure 1, Figure 4). Though NLP was initially established as a 
tool for clinical usage to aid in reaching a human genetic diagnosis 
more comprehensively. In contrast to human applications, the 
microbiome curated databases such as Disbiome are focused on 
experimental designs and are still under development, far from the 
mature human genetics tools such as OMIM [23,24]. Thus, there 
is a need to create comprehensive microbiome databases that link 
symptomology to specific pathogens.

The NLP pipeline was a very useful system, but similar to new 
technologies and methods, it had a number of limitations and 
ways to overcome them. These potential shortcomings fall into 
roughly two categories: the quality of the information being 
used, and the system being used to interpret it. The first exists 
because the NLP system took all literature as it currently exists, 
disregarding the possibility of incorrect information. The second 
exists due to the inherent complexity of the human language and 
grammatical idiosyncrasies of different authors. For example, 
the method used for segmenting sentences was not perfect and 
was not guaranteed to isolate all links where a microbe and an 
entity existed in the same sentence, especially when a sentence 

was heavy with non-terminating periods. Another example was 
in the use of dependency parsing, which relied on the accuracy of 
the parser, the usefulness of the curated parse patterns being used, 
and the exhaustive nature of the parse patterns. Thus, the most 
obvious shortcoming for the NLP pipeline was the possibility of 
useful data not being included in the interpretation. A step towards 
overcoming these limitations is to urge the field to create better 
methods that address parsing and sentence structure interpretation.

In summary, this study demonstrated a high diagnostic yield 
after clinical reviewer metagenomics analyses for patients with 
urological symptoms. Consistent with the clinical reviewer 
findings, the NLP system reported 97% and 84% of patient samples 
had at least one and two pathogen(s), respectively compared to 
infectious disease expert summaries. However, in a number of 
cases NLP provided better insights as to the presence of rare 
known uropathogens. We emphasize the use of clinical reviewers 
in conjunction with an NLP system to accurately report pathogen 
species on clinical reports.
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