
Volume 4 | Issue 2 | 1 of 6Int J Biomed Res Prac, 2024

One-Step Image Reconstruction for Cine MRI with a Quadratic Constraint
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ABSTRACT
Motivation: In cine MRI, the measurements within each timeframe alone are too noisy for image reconstruction. 
Some information must be ‘borrowed’ from other time frames and the reconstruction algorithm is a slow iterative 
procedure.

Goals: We set up a constrained objective function, which uses the measurements at other time frames to regularize 
the image reconstruction. We derive a non-iterative algorithm to minimize this objective function.

Approach: The derivation of the algorithm is based on the calculus of variations. The resultant algorithm is in the 
form of filtered backprojection.

Results: The feasibility of the proposed algorithm is demonstrated with a clinical patient brain study.

Impact: Non-iterative reconstruction that minimizes a constrained objective function significantly increases the 
throughput in healthcare institutions. This may translate to reduced healthcare costs. The new reconstruction 
formula has a closed form that gives an explicit expression of how to incorporate the reference image in dynamic 
reconstruction.
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Introduction
Cine MRI provides detailed information on both anatomy changes 
and dynamic motion within a patient. It requires very fast data 
acquisition that contains enough information to reconstruct the 
entire image [1-4]. At each time frame, the k-space may not be 
fully sampled, and the measurements may be noisy.

Some image information changes fast from one time frame to 
another, while some other image information changes slowly. 
Therefore, some image information can be ‘borrowed’ from 
neighboring time frame to assisting image reconstruction at the 
current time frame, so that this reconstructed image is not as noisy 
and does not contain as many artifacts.

Many methods are available to ‘borrow’ data outside of the 
current timeframe. One popular method is the use of the low rank 
constraint [5]. Low-rankness methods commonly explore the 
linear correlations among multiple MRI images. In other words, 
the low rankness encourages the different images at different time 
frames to look like each other. An iterative algorithm is required 
to minimize the objective function that contains a rank term. For 
example, the alternating direction methods of multipliers (ADMM) 
framework is commonly used to solve the minimization problem 
[6].

Another group of cine MRI reconstruction methods is based on 
the compressed sensing framework [7-11]. Compressed sensing 
problems are solved by iterative algorithms and their associated 
objective functions commonly use the L1 norm or the L0 norm 
[12,13].
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In this paper, we propose an image domain denoising method by 
‘borrowing’ image information from other timeframes [14]. The 
proposed algorithm is non-iterative and has a closed-form formula, 
similar to [9]. Thus, the proposed method is computationally 
efficient.

Methods
Algorithm Derivation
We consider the following objective function v to be minimized:

    (1)

where  is the three-dimensional (3D) image to be reconstructed,  
 is a reference 3D image that  should somewhat resemble, 

𝑅𝑓 is the 3D Radon transform of the function  is 
a measurement of the Radon transform, and β is a controlling 
parameter.
Since the 3D Radon transform of the function  can be 
expressed as

     (2)

Then (1) becomes

       (3)

The calculus of variations method [15] is used to find the optimal  
. The initial step of this method is to replace the function    

in (3) by the sum of two functions . The next step is to 
set the partial derivative   to zero. That is,

  (4)

In practice, the function  is compact, bounded, and continuous 
almost everywhere. After changing the order of integrals, we have

 (5)

Equation (5) is in the form of

     (6)

where  is any arbitrary function. According to the calculus of 
variations, one must have

                                                                                        (7)

which is the Euler-Lagrange equation. The Euler-Lagrange 
equation in our case is

                                  (8)

By rearranging the terms, eq. (8) can be rewritten as

                 (9)

Notice that

                 (10)

is the 3D Radon backprojection of the projection data . The 
relationship between  and  is that  is the blurred version 
of , and the convolution kernel for this blurring effect is  . 
In other words,

                     (11)

and

                         (12)

The left-hand-side of (12) is in the form of a 3D convolution. The 
Fourier domain version of (12) is given as

                                             (13)

where the capital letters are used to represent the 3D Fourier 
transform of their spatial domain counterparts, which are 
represented in lowercase letters. The frequency domain counterpart 
of the spatial domain variable  is .

Solving for  from (13), we have

                   (14)

This closed-form expression is the main result of our theoretical 
derivation.
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Let us consider two extreme cases. When β = 0 (no regularization),

                                                               (15)

which is equivalent to the 3D Radon inversion formula [16]. The 
Laplace operator, , can be implemented in the Fourier 

domain as a filter of . If we change the order of filtering and 
backprojection in (15), the filter becomes one-dimensional (1D) 
and is the second order derivative in the spatial (Radon) domain.

When, β  → ∞ (too much regularization),

                                                                           (16)

which is equivalent to f = g in the spatial domain. In this extreme 
case, the measurements are ignored, and the final image is the same 
as the reference image. When 0 < β  < ∞, (14) gives a regularized 
reconstruction of f. The reference image g can be chosen as the 
static image reconstructed by using the summation of all the 
measured k-space data from every cardiac timeframe.

Algorithm Implementation
The proposed one-step regularized cine MRI reconstruction 
algorithm can be implemented as the following steps.

Step 1: Prepare two images, by a method presented in Section 2.1. 
One image is reconstructed using the current timeframe data, and 
the other image is reconstructed using the sum of all timeframe 
data. The first image  is the 3D inverse Fourier transform 
of , and the second image  is the 3D inverse Fourier 
transform of .

Step 2: Select a parameter β. Combine the two images produced in 
Step 1 in the Fourier domain as

                     (17)

Step 3: Find the 3D inverse Fourier transform of   obtained from 
Step 2 and obtain the final image . In reality, the numerator of 
(17) can be implemented in the spatial domain, because the second 
order derivative operation is very easy to implement for the 3D 
Radon data along one dimension. However, we do not know an 

easy way to implement the filter   in the spatial domain, 

because the convolution kernel in the spatial domain needs to be 
numerically evaluated.

Our cine MRI used 3D radial sampling in the k-space, with 3D 
golden-angle radial (Koosh ball) trajectories. Some imaging 
parameters are as follows: the number of readouts (Nkx) was 
480, the number of spokes was 3489 in one cardiac cycle, and the 
image matrix size was 240 x 240 x 240. The data was grouped in 
to 16 timeframes in a cardiac cycle. We used 20 coils for parallel 
imaging. However, only one coil was used in this study to illustrate 
the effectiveness of the proposed methodology.

The proposed image reconstruction method is based on a revision 
of the standard 3D Radon inversion formula. After the 1D inverse 
Fourier transform along the radial lines, each datapoint in the 
spatial domain represents a 2D planar integral of the object. The 
kooshball-like spoke measurement geometry makes the planar 
integral measurements have a density function of 1/r2, where r is the 
distance from the datapoint location to the coordinate origin. This 
non-uniform 1/r2 effect is compensated for by the 1D Laplacian 
operator performed in each radial direction. The Jacobian factor 
in the formula accounts for the sample distribution on the spheres 
centered at the k-space origin. For the golden-angle radial sampling 
scheme, the spokes are fairly uniformly distributed. Therefore, the 
Jacobian factor can be approximated as unity [17,18].

Results
Cine MRI data acquired from Coil #1 was chosen in this paper 
to illustrate the proposed algorithm. Results at timeframes #1, #8, 
and #16 in a cardiac cycle are shown in this section. The patient’s 
head did not move during the cardiac cycles; however, the beating 
heart caused the blood vessel pulsation.

At timeframe #1, reconstructed images of slice #120 at x, y, and z direction 
are displayed in Figures 1, 2, and 3, respectively. Three different cases are 
shown for each orientation: β = 0.0; β = 0.0005; β = 500.

Similarly, at timeframe #8, reconstructed images of slice #120 at x, 
y, and z direction are displayed in Figures 4, 5, and 6, respectively. 
At timeframe #16, reconstructed images of slice #120 at x, y, and z 
direction are displayed in Figures 7, 8, and 9, respectively.

Figure 1: Reconstruction images of slice x = 120 at timeframe #1 using three β values: 0, 0.0005, and 500.



Volume 4 | Issue 2 | 4 of 6Int J Biomed Res Prac, 2024

Figure 2: Reconstruction images of slice y = 120 at timeframe #1 using three β values: 0, 0.0005, and 500.

Figure 3: Reconstruction images of slice z = 120 at timeframe #1 using three β values: 0, 0.0005, and 500.

Figure 4: Reconstruction images of slice x = 120 at timeframe #8 using three β values: 0, 0.0005, and 500.

Figure 5: Reconstruction images of slice y = 120 at timeframe #8 using three β values: 0, 0.0005, and 500.
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Figure 6: Reconstruction images of slice z = 120 at timeframe #8 using three β values: 0, 0.0005, and 500.

Figure 7: Reconstruction images of slice x = 120 at timeframe #16 using three β values: 0, 0.0005, and 500.

Figure 8: Reconstruction images of slice y = 120 at timeframe #16 using three β values: 0, 0.0005, and 500.

Figure 9: Reconstruction images of slice z = 120 at timeframe #16 using three β values: 0, 0.0005, and 500.
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The reconstructed images with β = 0 carry the correct information, 
but unfortunately, they are very noisy. It is observed that the images 
with β = 500 are least noisy, but they are wrong images because 
they do not contain much dynamic information. Images with large 
β values have too much influence from the static reference image. 
A small β value such as 0.0005 seems to be a proper choice.

Conclusion
Due to the nature of cine MRI, the acquisition time is short, the 
k-space is sparsely sampled, and the signal- to-noise ratio is low. 
To improve signal-to-noise ratio, a constrained objective function 
is set up that provides a reference image. This objective function 
is in a quadratic form. A quadratic objective function does not 
automatically translate into an efficient analytic algorithm due to 
the huge size of the imaging matrix that cannot be directly stored 
and inverted.

This paper develops an analytic method to find the optimal solution 
of a quadratic objective function. This algorithm is expressed in 
the Fourier domain, and the inversion of a huge imaging matrix is 
avoided. This optimal solution of the optimization problem is not a 
simple linear combination of the current timeframe image and the 
average timeframe image. The combination of these two images 
depends on the frequency.

The parameter β defined in the objective function should be small 
enough not to let the reference image dominate the reconstruction, 
and large enough to fill in some missing information that the 
primary data lacks. Unfortunately, there is no explicit formula to 
determine β. Trial-and-error experiments may be needed to select 
a satisfactory value of β.
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