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ABSTRACT
Purpose: Topical analgesics have shown efficacy for patients experiencing mild and moderate pain. Due to 
high variability in patient demographics, clinical profile, and analgesic response, identifying the most suitable 
treatment for pain patients is difficult. Artificial intelligence and machine learning techniques have shown promise 
in individualizing treatments. This analysis reviews an interpretable machine learning method to individualize 
treatment. Due to adverse effects associated with many analgesics, the ability to predict treatment response has a 
tremendous benefit to clinicians and patients.

Patients and methods: Data were evaluated from 186 pain patients enrolled in an Institutional Review Board 
approved study (RELIEF) after use of a topical pain-relieving analgesic patch for 14 days. A novel interpretable 
machine learning method was developed based on a multi-objective ensemble classification/regression technique. 
Data was expanded to increase predictive accuracy with pre- and post-modeling techniques to raise interpretability. 
85 features were identified that allowed calculation of data between testing and training groups. Data were split 
into training (n=152) and testing (n=34) patient sets in a stratified manner. Three basic endpoints were examined 
for the prediction models: total BPI Severity scores, total BPI Interference scores, and changes in the total drugs. 

Results: Results demonstrated that the machine learning models were able to predict endpoints with extremely 
high accuracy, with the AUC exceeding 90% and Spearman correlation metric exceeding 0.4 for all endpoints, far 
exceeding the test set performance of other benchmark models. The machine learning method reduced the number 
of significant features from 85 to 19 and defined well characterized groups of responders and non-responders. 

Conclusion: The machine learning model demonstrated that predictions of positive response could have been made 
prospectively for patients that benefited from the topical pain-relieving patch. This predictive analytic methodology 
can be applied to separate and larger datasets and used retrospectively to analyze whether a certain treatment 
might be effective in a given population. 

Keywords
Non-opioid treatment, Machine learning, Predictive analytics, 
Salonpas® Pain Relieving Patch, Topical analgesics.

Abbreviations: AI: Artificial Intelligence; AUC: Area Under the 

Curve; KNN: k-Nearest Neighbors; MSE: Mean Squared Error; 
ML: Machine learning; RELIEF: Relieving Pain: Evaluating 
Patient Quality of Life Improvement – Perceptions, Experience 
and Feedback After Use of A Topical Pain RELIEF Patch; 
OPERA: Optimizing Patient Experience and Response to Topical 
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Analgesics; PCA: Principal Component analysis; ROC: Receiver 
Operating Characteristic; SVR: Support Vector Regression.

Introduction
Chronic pain is a stressful and life-altering condition associated 
with various disease states [1]. It interferes with every aspect of a 
person’s life, including general activities, walking, work, mood, 
enjoyment of life, relations with others, and sleep. More severe 
and persistent pain may also lead to a chronic pain “syndrome”, 
described as a mental health condition going beyond pain 
symptoms leading to the development of conditions like depression 
and anxiety and being furthermore linked with mortality [2-6].
The goals of chronic pain treatments include effective pain 
relief, improved quality of life, and enhanced functional ability. 
Medications, including opioids and nonsteroidal anti-inflammatory 
drugs (NSAIDs), are commonly prescribed for chronic pain, but 
since the declaration of a public health emergency known as the 
“opioid epidemic” in 2017 [3] chronic pain therapy researchers 
have emphasized non-opioid treatments.

Topical analgesic therapies can offer pain relief devoid of the risks 
of abuse, misuse, and addiction [7]. The effectiveness of topical 
analgesics therapies for chronic pain patients was examined 
in our previous Institutional Review Board (IRB) -approved 
observational study, Optimizing Patient Experience and Response 
to Topical Analgesics (OPERA) [8, 9]. The results advocated 
for the benefits of topical analgesics therapies in reducing pain 
severity, improving function (reducing pain interference) and 
reducing patient overall analgesic drug consumption (total drugs 
used) during the follow-up periods. 

Pain-relieving patches are a specific category of analgesics. There 
is a distinction between transdermal patches- where the medication 
is absorbed into the systemic circulation (e.g. fentanyl, nicotine), 
and topical patches, such as lidocaine and methyl salicylate. The 
Salonpas® Pain Relieving Patch (Hisamitsu Pharmaceutical 
Company, Inc, Japan), is an over the counter (OTC) analgesic 
topical pain patch that includes menthol, camphor, and methyl 
salicylate being recently shown to reduce the severity and 
interference of pain in chronic pain patients [10].

Our observational outcomes [9,10] have shown that even though 
topical analgesics are beneficial for the majority of the patients 
studied, the effectiveness varies, and a subset of patients do not 
benefit at all. Thus, a mechanism to predict analgesic responders 
would be of great value by allowing clinicians to identify the most 
suitable analgesic therapy for each chronic pain patient. Many 
research studies [11-13] have attempted to individualize pain 
treatments via pharmacogenetics and other patient phenotypes 
or characteristics; as of now, there remains no validated way for 
clinicians to predict individual patient responses in order to select 
the most effective among different treatment plans and to make 
informed critical clinical decisions. A machine learning analytic 
approach has been utilized previously [14] to predict chronic 
pain patient response to topical analgesic treatment. The results 
suggested that this machine learning model could have predicted 

in advance at least 10% of patients who (would have) failed 
treatment with the studied therapy.

One of the main limitations of machine learning applications 
in translational research is their complexity and the fact that no 
clear conclusions can be made for which features are the most 
defining ones for each prediction. Recently, a new category of 
techniques has been suggested, Explainable Artificial Intelligence 
(XAI) methods [15-17], whose need became obvious by the 
documentation of decision errors of AI systems attributed to biases 
embedded in the training data [18]. Besides detecting vulnerable 
points and helping to improve prediction models, explainability 
is also essential because it produces knowledge about domain 
relationships contained in the data that may help to unravel the 
underlying explanatory factors of the data. 

In the present paper, we introduce a new interpretable machine 
learning pipeline, enrich it with pre- and post-modelling 
explainability modules, and apply it to individualize the therapy of 
chronic pain treatment by predicting the benefits of the Salonpas® 
Pain Relieving Patch treatment.

Material and methods
Data 
In the present analysis, data from the RELIEF study [10] were 
used to individualize the topical analgesics therapy by training and 
testing prediction models to evaluate which chronic pain patients 
would benefit from the Salonpas® Pain Relieving Patch treatment. 
Three different endpoints were examined in the present study 
including the changes in 1) total severity, 2) total interference 
and 3) total drugs before and after the treatment with Salonpas® 
Pain Relieving Patch from day 0 to day 14. Total severity and 
total interference were estimated using the Brief Pain Inventory 
(BPI) scale [19]. The RELIEF study was performed in full 
accordance with the rules of the Health Insurance Portability 
and Accountability Act of 1996 (HIPAA) and the principles 
of the declaration of Helsinki and the international council 
of Harmonisation/Good Clinical Practice (GCP). The study 
protocol was approved by the IntegReview institutional review 
board. 

The RELIEF dataset was composed of data before and after 
treatment for 186 chronic pain patients. 89% of participants 
improved their total severity and total interference status and 
42% reduced the total number of analgesic drugs used after study 
patch treatment employed. The dataset was split to training and 
test sets with training set having 152 patients and test set 34 
patients maintaining the same percentages of responders and non-
responders to treatment. All patients replied to 41 questions before 
and 14-days after the treatment. These questions were formulated 
as features by encoding categorical variables to features using the 
FeatureHasher method of the Scikit-learn package [20] to allow 
for their integration with number features, ending up with a list of 
85 features. Data were scaled to zero means and standard deviation 
of 1 and missing values were imputed with KNN-imputation 
method using k=5. 10-fold stratified cross validation was used on 
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the training set to maintain the same percentage of responders and 
non-responders in the different folds.

Machine Learning Method 
The three prediction problems were treated as regression problems 
since the outcomes of this study can be real numbers. 

The machine learning method utilized was applied previously in 
another topical analgesics population study [14]. We attempted 
to further improve its ability to train and test accurate regression 
models with imbalanced datasets minimizing the number of 
selected features and improving interpretability of the models. 
In particular, an ensemble dimensionality reduction technique 
employing a multi-objective heuristic optimization algorithm [21] 
allowed us to a) identify the optimal feature subset to be used 
as input to the classifiers and to select b) the most appropriate 
regression model among Support Vector Regression [22] and 
Random Forest Methods [23], c) its optimal parameters and d) 
the optimal order of the classification models in classifiers chain. 
Classifiers chains method [24] was used to take into consideration 
interactions between the examined endpoints.

The heuristic optimization framework is a pareto-optimization 
technique since its selection process is driven by organizing 
solutions to non-dominated fronts and assigning close fitness 
values to solutions belonging to the same front. 

The iterative process of the optimization framework begins by 
initializing a set of solutions. Each solution consists of i) a value 
indicating which of the two alternative Support Vector Regression 
kernel types and the Random Forest models will be used (a value in 
[0,1) indicates the selection of Radial Basis Function Kernel SVR, 
a value in [1,2) indicates the selection of linear Kernel SVR and 
a value in [2,3) indicates using random forests), ii) 85 values for 
deciding if a feature will be used as input (values greater than 0.5 
force its use), iii) three values for optimizing the gamma parameter 
of Radial Basis Functions Kernel, the regularization parameter C of 
SVR models and the number of Random Trees in Random Forests 
and iv) one variable for the selection of which of the 6 potential 
rankings of the predictors will be used in the classifiers chain. The 
first population of solutions is generated by randomizing values 
considering normal distribution of each variable. 

The optimization goals that were formulated as Fitness Functions 
were following:
• Fitness Function 1: Classification accuracy
• Fitness Function 2: Area under the Receiver Operating 

Characteristic (ROC) curve 
• Fitness Function 3: Spearman correlation in between predicted 

and real outputs
• Fitness Function 4: minimalization of support vectors or 

random tree)
• Fitness Function 5: 1/(1+number of selected features)

The outputs of the prediction models were binarized to class 1 if 
the value is bigger than or equal to 0, and to class -1 otherwise to 

calculate the classification metrics in the aforementioned fitness 
functions.

The utilized fitness functions aim to minimize the number 
of selected features, maximize regression and classification 
performances and minimize the complexity of the classifier. 

After the evaluation of the population, the Pareto fronts of non-
dominated solutions are calculated and solutions are assigned 
a fitness value based on their pareto front. The Roulette Wheel 
Selection method is applied to generate a new population 
of solutions which are then differentiated using the Genetic 
Algorithms two-point crossover and Gaussian Mutation operators. 
The new population is evaluated again and this iterative process 
continues until it converges (solutions become close enough 
for a number of iterations) or reaches the maximum number of 
generations (Figure 1).

In order to further interpret the revealed prediction models, 
the selected features were further analyzed using Spearman 
Correlation and hierarchical clustering as well as Principal 
Component Analysis and unsupervised K-Prototypes clustering 
of the patients combined with functional enrichment analysis. 
The k in k-prototypes Clustering is based on the k-prototypes 
algorithm [25] because we have both numerical and categorical 
inputs. Calinski-Harabasz score [26] was used to calculate the 
optimal number of clusters experimenting for number of clusters 
in between 2 and 20.

Figure 1: Flowchart of the proposed machine learning model.



Volume 5 | Issue 1 | 4 of 11Anesth Pain Res, 2021

To compare our method against, SVR and Random Forests models 
were trained and evaluated using WEKA software (we used the 
default parameters suggested in WEKA documentation) [27] 
using the same training and test sets and the same cross validation 
strategy as in the proposed machine learning method, while also 
optimizing their parameters (C and gamma for SVR, and number 
of trees for Random Forests) with grid search.

Results
PCA and Clustering Analysis 
Principal component analysis (PCA) and k-Prototypes unsupervised 
clustering was conducted to explore whether the RELIEF data can 
be separated in clusters that can discriminate between responders 
and non-responders (Figure 2). The best clustering based on 
Calinski Charabazs metric was conducted when two clusters 
were used. By examining the projections of the endpoint changes 

it is easily observable that the two revealed clusters have some 
potential into discriminating responders and non-responders based 
on the BPI Severity and BPI Interference changes but not on the 
Total drugs change. Moreover, it seems that there does not exist 
a single hyperplane differentiating between responders and non-
responders for none of the examined endpoints and thus non-linear 
methods are required to optimize classification.

Predictive Analytics and Comparative Results 
The proposed machine learning model was applied in the examined 
dataset using as parameters: population size of 100 and maximum 
number of generations of 200. Since the proposed method is a 
heuristic approach, it was applied 10 times in the proposed dataset 
and Figure 3 presents its average performance in predicting the 
3 examined endpoints. Figure 3 also presents the performance 
of state-of-the-art regression models, SVR and Random Forests, 

Figure 2: A. K-Prototypes clustering of RELIEF Dataset. Red and Blue nodes depict the revealed two clusters using the three more important Principal 
Components and the percentage of the explained variability of each one of these PCAs is depicted in the axis labels. B. 3D representation of the PCAs 
of the RELIEF Dataset projecting on the samples the BPI Severity Change before and after the treatment. Grey to black color scale was used to depict 
values from min to max respectively. C. 3D representation of the PCAs of the RELIEF Dataset projecting on the samples the BPI Interference Change 
before and after the treatment. Grey to black color scale was used to depict values from min to max respectively. D. 3D representation of the PCAs 
of the RELIEF Dataset projecting on the samples the Total Drugs Change before and after the treatment. Grey to black color scale was used to depict 
values from min to max respectively. *PCA- Principal Component Analysis; BPI- Brief Pain Inventory.
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Figure 3: Comparative results of trained machine learning models in predicting A. Total Severity Change, B. Total Interference Change and C. Total 
Drugs Change. Evaluation metrics have been calculated in Training set using 10-fold cross validation and in Test set using the external test set. *BPI- 
Brief Pain Inventory.
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implemented through Weka software and with their parameters 
being optimized using grid search and cross validation in the 
training dataset.

Experimental results show the superiority of the proposed machine 
learning method in all examined metrics with the increase being 
even more pronounce in the external test set. It is noteworthy, 
that the proposed model achieved high Spearman correlation 
values (higher than 0.4) of the predicted versus the real output 
surpassing the other methods for all endpoints. It is noteworthy 
that the improved performance of the proposed method came with 
a significant reduction in the utilized features since it used only 19 
of the 85 features of the dataset.

The best predictor that was found using the proposed machine 
learning method was a Random Forest of 47 random trees that uses 
19 features while the order of the predictors in the classifiers chain 
starts from the predictor of BPI Interference change, followed by 
the predictor of BPI Severity change and the predictor of Total 
drugs change respectively.

The final trained predictive model is accessible as trained Sklearn 
Random Forest model in https://www.insybio.com/pain_research/ 
 
Interpreting Prediction Models
Table 1 presents the selected features and their category. 19 
features were selected originating from 16 questions from the 
Primary complaint/diagnosis and location, the brief pain inventory 
and the current medications categories.

Spearman correlation and hierarchical clustering analysis was 
conducted to further explore why these features were important 
and interpret the trained machine learning models. In particular 
the selected features were cross correlated and then hierarchical 
clustering was applied revealing that these features are organized 
in three uniform clusters. The first cluster is negatively correlating 
with the endpoint’s change, the second is positively correlating 
with the endpoints’ change, while the third cluster is a mixed one.

As another step of for the interpretation of the revealed features 
set and model, unsupervised k-prototypes clustering was applied 
to applied to the RELIEF dataset similarly to the analysis that 
was done and presented in Figure 2 but using only the 19 selected 
features (Figure 4). Calinski-Harabazs metric was used to identify 
the optimal number of clusters examining clusterings with 2 to 20 
clusters. The best clustering was achieved for 7 clusters and it is 
presented in Figure 5. In order to better understand the association 
of the features with the outcomes we performed enrichment 
analysis of the revealed clusters with the binarized endpoints 
variables and annotated the clusters with the examined features 
using the centers of the revealed clusters. This analysis showed 
that 5 out of 7 clusters of participants decreased their BPI scores 
after treatment but this happened only for 2 out for 7 clusters for 
the total number of medications change. Moreover, a cluster of 
super-responders (Cluster 1) who reduced both BPI scores and 
total number of drugs was revealed consisting of 16.2% of the 

participants. These super-responders were Voltaren® users, taking 
high number of anti-inflammatories, having problems in sleep and 
doing no or very low physical exercise. This group is predicted to 
get the most benefits from initiating a Salonpas® Pain Relieving 
Patch -based pain treatment. On the other hand, there is a small 
clear cluster of non-responders (Cluster 6) who did not have an 
office staff verification of pain complaint diagnosis, are already 
using alternative medications and do not have knee pain. 

Examining the Applicability of the Individualized Prediction 
Models in Other Cohorts
From a previous study of our authoring group [14] a machine 
learning model was used to identify responders of topical analgesics 
therapies using the OPERA study dataset, which is a dataset of 631 
chronic pain patients also treated with a topical analgesic [8,9]. 
In this study approximately 10% of the participants had been 
predicted not to be suitable for the examined topical analgesics 
therapies.

In the context of the present study, an interpretable machine 
learning model was developed to predict the specific response of 
chronic pain patients in Salonpas® Pain Relieving Patch -based 
treatment for chronic pain. In order to explore how this model 
can be applied in another cohort we used the trained model for 
Salonpas® treatment outcome prediction to the data of OPERA 
study. Since, two of the features of the Salonpas® treatment 
outcome prediction model (BQ2, Bq6.3) were not measured in the 
OPERA study, k-NN imputation was used for them after merging 
the RELIEF and OPERA datasets using their common features. 
Prediction analysis showed that out of the 10% of non-responders 
from the topical analgesic therapies in the OPERA study, 73.6% 
of them would have presented reduced BPI scores if they were 
treated with Salonpas® Pain Relieving Patch. Moreover, 62.3% 
of the responders of topical analgesics treatments in OPERA study 
would have further decreased the overall response measures as the 
average of the reductions in BPI scores and Total number of drugs 
administered to them.

Discussion 
Chronic pain affects tens of millions of people worldwide, 
affecting function and quality of life. In light of the opioid crisis, 
emphasis has been placed on the development of non-opioid 
therapies, including topical analgesics patches, and exploring 
their potential to alleviate chronic pain. However, these therapies 
are not beneficial for all chronic pain patients and practitioners 
would benefit from a predictive, personalized medicine approach 
to determine which therapy should be administered to each patient 
based on their clinical and demographic profile. In the present 
analysis, we attempted to evaluate the use of explainable machine 
learning into building accurate outcome prediction models for a 
topical analgesic patch for chronic pain patients.

PCA analysis using the features collected in the RELIEF study 
demonstrated that these features have potential to discriminate 
the between responder and non-responder pain patients for the 
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Figure 4: Spearman correlation in between selected features from proposed machine learning model. Rectangles depict the revealed clusters of features 
using hierarchical clustering while the Spearman correlation of each feature with the examined endpoints is also provided. Insignificant correlations are 
denoted with an empty cell in the heatmap.

Table 1: Final list of selected features from machine learning model.
A/A Feature_id Question Category
1 Sum_Arthritis Arthritis Primary Complaint/ Diagnosis and Location
2 BQ2 Office Staff Verification of Primary Pain Complaint Diagnosis Primary Complaint/ Diagnosis and Location
3 BQ6.3 Number of Weekly Heavy Physical Activity for 30 minutes or more Primary Complaint/ Diagnosis and Location
4 BBPI1 Pain other than everyday kinds of pain Brief Pain Inventory
5 BPI2.1OPEN_2 Areas of Pain (Hashing feature 2) Brief Pain Inventory
6 BPI2.1OPEN_3 Areas of Pain (Hashing feature 3) Brief Pain Inventory
7 BPI2.1OPEN_4 Areas of Pain (Hashing feature 4) Brief Pain Inventory
8 BPI2.1OPEN_5 Areas of Pain (Hashing feature 5) Brief Pain Inventory
9 BBPI3 Worst Pain Brief Pain Inventory
10 BBPI4 Least Pain Brief Pain Inventory
11 BBPI5 Average Pain Brief Pain Inventory
12 BBPI9.5 Relations with other people Brief Pain Inventory
13 BBPI9.6 Sleep Brief Pain Inventory
14 BBPIInterference BBPI Interference in Baseline Brief Pain Inventory
15 Bmed1.5 Other medications Current Medications
16 BPmed2.15 Voltaren Current Medications
17 BNumberOTC Number of Over the Counter Medications Current Medications
18 BNumberAntiinflammatoryRx Number of Anti-inflammatory Medications Current Medications
19 BTotalNumberMedications Total Number of Medications Current Medications
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Figure 5: 3D PCA representation of the participants of RELIEF Patients using the selected features from the proposed machine learning method. 
Clustering was conducted using k-prototypes method and the revealed clusters characteristics were presented using the centers of each cluster and 
hypergeometric distribution enrichment analysis was used to annotate clusters based on the examined endpoints.
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Salonpas® Pain Relieving Patch, but there does not exist a simple 
linear model that could classify responders and non-responders 
with adequate accuracy. Thus, more elaborate machine learning 
methods were required for this task. However, machine learning 
methods have the limitations of being mostly viewed as black 
boxes by clinicians and non-domain experts limiting thus their 
translational applications and significantly raising the adoption 
obstacles. For this reason, the present study introduced a new 
ensemble multi-objective optimization regression/classification 
machine learning model which uses contemporary pre- and post 
modelling explainability techniques to raise the interpretability 
of the final models. The applied method has been proven to be 
efficient in reducing the dimensionality of the prediction problem 
by selecting the most suitable feature subset, reducing thus the 
complexity of the overall model and raising its generalization 
properties. This pipeline was integrated with visualization, 
correlation, unsupervised clustering and enrichment analysis 
techniques to further explore the relationship of the selected inputs 
with the examined endpoints of the study shedding light into the 
trained prediction models.

Experimental results demonstrated that the proposed method 
significantly surpassed the performance of contemporary 
benchmark machine learning models in all the examined metrics. 
This improvement in the performance is attributed to the advanced 
feature selection mechanism and to the selection of the most 
suitable classification model and the optimization of its parameters 
for the selected feature subset. By forcing the trained model to 
be as simple as possible minimizing the selected features and 
the number of random trees or support vectors for RF and SVR 
methods respectively, the proposed method achieved significantly 
higher generalization properties in the independent test set 
compared to the benchmark models.

Post-modelling analysis revealed the relationships of the selected 
features between them and against the endpoints of the study 
as well as well-defined and characterized clusters of responders 
and possible non-responders of the Salonpas® Pain Relieving 
Patch chronic pain treatment in the group of patients studied. 
The Salonpas® Pain Relieving Patch seems to provide maximal 
benefits in patients who take high number of anti-inflammatory 
drugs, use Voltaren®, have pain in knee or foot, do little or no 
heavy physical exercise and have problems with their sleep. On 
the other hand, they do not seem to be effective for patients who do 
not have an authorized diagnosis of chronic pain and already use 
alternative over the counter medications. Single feature correlation 
analysis demonstrated that the higher the initial total interference 
score the bigger the margin for improvement using RELIEF study 
data while the higher the number of medications will lead to a 
bigger reduction of medications using Salonpas® Pain Relieving 
Patch but without reducing substantially the BPI scores.

To further evaluate the performance of the trained outcome 
prediction models for the Salonpas® Pain Relieving Patch into 
individualizing the therapy of chronic pain patients we applied 
the trained models to predict responders and non-responders of 
Salonpas® Pain Relieving Patch in the participants of OPERA 

study. This analysis demonstrated that the majority of the 
participants in OPERA who were proven not to be benefited 
from the examined topical analgesics treatments in this study 
would have been benefited from using Salonpas® Pain Relieving 
Patch. Moreover, 62.3% of the responders of topical analgesics 
treatments in OPERA study would have further decreased the 
overall response measures, such as the average of the reductions 
in BPI scores and the Total number of drugs administered to them.

The present study presents several limitations considering the 
availability of data and the limitations of the analysis techniques. 
The RELIEF study was an IRB-approved observational study and 
limited information was available about the specific diseases that 
were the cause of the chronic pain condition of the participants. 
The lack of this information not only limited the predictive 
accuracy of the models but did not allow us to explore the 
systemic effect of the topical analgesic treatments on the cause 
of the disease if any such exists. Moreover, the absence of in-
depth follow-up of the patients for a longer period of time (e.g., 
1-3 years) further restricted the assessment of the systemic and 
permanent effect of topical analgesics treatments. The assessment 
of the participants of OPERA study with the trained model for 
individualizing the Salonpas® Pain Relieving Patch treatment of 
chronic pain patients was very useful to evaluate the usability of 
this model in an independent study and to explore combining more 
than one machine learning models for individualizing chronic pain 
treatment. However, the two studies, RELIEF and OPERA, had 
different follow-up timings (14 days, and 3-6 months, respectively) 
and thus a unified study is required to evaluate the performance 
of the combination of the two prediction models. Finally, from 
a methods point of view, the proposed machine learning model 
could be expanded with additional methods from the explainable 
AI domain [28-31].

Conclusions
Topical analgesics can be of benefit to many, but not all pain patients 
as demonstrated by the present and previous studies. AI, machine 
learning, and predictive analytic models can be successfully 
incorporated into medical decision making and represent a novel 
precision medicine approach to allow healthcare practitioners to 
select only the treatments that have a high probability of success. 
However, their black-box nature and limited generalizability 
properties has limited their application in clinical trial. In the present 
paper, an explainable machine learning technique was introduced 
and used to predict patients’ response to OTC topical analgesics 
overcoming the aforementioned limitations of machine learning 
techniques. The proposed method, among others, revealed a group 
of super responders with well-defined clinical characteristics who 
are predicted to get the most benefits from the Salonpas® Pain 
Relieving Patch -based pain treatment.

Explainable machine learning models may enable clinicians to 
select viable nonopioid therapies with more confidence identifying 
the characteristics of responders and provide an unbiased method 
to precisely identify responders of non-opioid treatments.
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Combining questionnaire and clinical data with omics data, such 
as pharmacogenomics, should advance the science and safety of 
pain management in the future by identifying more accurate and 
informative models for the prediction of the response of opioid and 
non-opioid chronic pain treatments.
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