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Introduction
Clinical evidence indicates that stress contributes to initiation, 
maintenance and progression of tobacco smoking [1,2]. For 
instance, college students increased smoking during periods of 
high stress such as the time leading up to final examination [3,4]. 
In a sample of 2,961 adolescents, emotional distress in 10th grade 
was associated with increased smoking in these individuals once 
they were in 12th grade [5]. Smokers reportedly have more stressful 
situations and negative life events than do nonsmokers [2,6-8] and 
stress increases craving for tobacco [9-12]. Subjective accounts 
indicate that smokers use tobacco smoking to reduce their stress 
levels [13,14] and expect smoking to decrease stress-induced 
negative affect [15,16]. Indeed, numerous laboratory studies have 
found smoking produces reduction in negative affect associated 
with stress exposure [10,15,17,18]. Animal studies have shown 
that nicotine, the main addictive component of tobacco, attenuates 
stress-induced negative affect [19-21] and reduces stress-induced 

immobilization and changes in corticomesolimbic dopamine 
levels [22-24]. Taken together, these clinical data indicate stress 
as a facilitator of tobacco smoking and nicotine dependence.

In animal research, it has been evidenced that acute stress exposure 
effectively reinstates nicotine-seeking behavior in procedures 
modeling human smoking relapse [25-29]. To date, however, 
it remains unknown whether acute stress exposure influences 
nicotine intake in animal models of nicotine self-administration. 
The present study addressed this issue by challenging animals with 
pharmacological stressor, yohimbine, after establishment of stable 
nicotine intake. Yohimbine is a α2 adrenergic receptor antagonist. 
It increases activity of noradrenergic systems including neural 
structures implicated in stress response [30-33] and produces 
anxiety- and stress-like states in humans and laboratory animals 
[34-39]. It has been increasingly used as a pharmacological 
stressor, especially in the field of drug addiction research [40-48]. 
Importantly, yohimbine-induced reinstatement of drug-seeking 
behavior in animal models of drug relapse appears to be more robust 
than that elicited by foot shock stress [49-52]. Therefore, this study 
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employed yohimbine as an anxiogenic and stress-inducing agent 
to determine its effect on nicotine self-administration behavior.

Moreover, there are substantial individual differences in smoking 
behavior in humans and in nicotine self-administration in animals. 
Studies on individual differences in drug self-administration have 
usually focused on the effects of pre-existing behavioral profiles on 
drug intake. For instance, levels of loco motor response to novelty 
[53-57], anxiety-like behavior in the elevated plus-maze [58], and 
consumption of sucrose [59,60] have been found to predict the 
propensity to self-administer psychostimulants including nicotine. 
However, in the operant nicotine self-administration literature 
animals that self-administer lower levels of nicotine are often 
excluded from experiments [61-64]. Consequently, no attempt has 
been made to examine the effect of smoking-predisposing factors 
such as stress in these low nicotine-taking subjects. Therefore, the 
second goal of this study was to compare the effects of stress on 
nicotine self-administration behavior in rats that differed in their 
nicotine intake prior to acute yohimbine challenge.

To get the most robust operant behavior for nicotine intake, this 
study used a nicotine unit dose of 0.03 mg/kg/infusion because 
it was the peak dose on dose-response curve for nicotine self-
administration [65-67]. After establishment of stable nicotine self-
administration, animals were designated as the low nicotine-taking 
(LNT) that self-administered ≤ 6 infusions/session and the high 
nicotine-taking (HNT) rats that self-administered > 6 infusions/
session. Such a cut-off criterion was made based on two reasons. 
First, in adult smokers, it has been suggested that 5 cigarettes/day 
would be a reasonable threshold for establishing nicotine addiction 
[68] and that each cigarette has been estimated to deliver as much as 
0.03 mg/kg to smokers [69]. Accordingly, six infusions/session at 
a unit dose of 0.03 mg/kg/infusion (free base) were comparable to 
the threshold for nicotine addiction. Therefore, the LNT rats could 
be taken as an equivalent to “social” or “light” human smokers, 
whereas the HNT rats could serve as the subjects with heavy 
smoking or addicted to nicotine. Second, as mentioned above, rats 
showing a lower nicotine intake have been usually excluded from 
experiments in order for the self-administration paradigm to serve 
as a valid model of nicotine addiction. For example, although 
the specific cut-off criteria reported in literature varied, rats self-
administering ≤ 6 infusions/session at 0.03 mg/kg/infusion of 
nicotine are always excluded from experiments [61-64].

Methods
Subjects
Male Sprague-Dawley rats (Charles River, Portage, MI, USA) 
weighing 200–225 g upon arrival were used. Animals were 
individually housed in a humidity- and temperature-controlled 
(21-22oC) colony room on a reversed light/dark cycle (lights on 
20:00; off 8:00) with unlimited access to water. After one week 
habituation, rats were placed on a food-restriction (20 g chow/day) 
regimen throughout the experiments. Training and experimental 
sessions were conducted during the dark phase at the same time 
each day (10:00-16:00). All experimental procedures were carried 
out in accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals and approved (#1183) by 
the University of Mississippi Medical Center Institutional Animal 
Care and Use Committee.

Self-administration apparatus 
Experimental sessions were conducted in the standard operant 
conditioning chambers located inside sound-attenuating, ventilated 
cubicles (Med Associates, St. Albans, VT, USA). The chambers 
were equipped with two retractable response levers on one side 
panel and with a 28-V white light above each lever as well as 
a red house light on the top of the chambers. Between the two 
levers was a food pellet trough. Intravenous nicotine injections 
were delivered by a drug delivery system with a syringe pump 
(Med Associates, model PHM100-10 rpm). Experimental events 
and data collection were automatically controlled by an interfaced 
computer and software (Med Associetes, Med-PC® IV).

Food training
To facilitate learning of operant responding for nicotine self-
administration (see below), rats began food training sessions 
on the day following the initiation of food-restriction regimen. 
Responses on the active lever were rewarded with delivery of a 
food pellet (45 mg). Sessions lasted 1-h with a maximum delivery 
of 45 food pellets on a fixed-ratio (FR) 1 schedule. Once the rats 
learned responding and earned 45 pellets total in a session, the 
reinforcement schedule was increased to FR5. Successful food 
training was achieved once rats earned in a single session the total 
45 food pellets on the FR5 schedule. Food training was typically 
completed within 2-5 sessions.

Surgery
After food training, the rats were anesthetized with an isoflurane-
oxygen mixture (1–3% isoflurane) and implanted with jugular 
catheters. Catheters were constructed using a 15 cm piece of Silastic 
tubing (0.31 mm ID and 0.63 mm OD, Dow Corning Corporation, 
Midland, MI, USA) attached to a 22-gauge stainless-steel guide 
cannula. The latter was bent and molded onto a durable polyester 
mesh (Plastics One Inc., Roanoke, VA, USA) with dental cement 
and became the catheter base. Through an incision on the rat back, 
the base was anchored underneath the skin at the level of scapulae 
and the catheter passed subcutaneously to the ventral lower neck 
region and inserted into the right jugular vein (3.5 cm). Animals 
were allowed at least 7 days to recover from surgery. During the 
recovery period, the catheters were flushed daily with 0.1 ml of 
sterile saline containing heparin (30 U/ml) and time tin (66.7 mg/
ml) to maintain catheter patency and prevent infection. Thereafter, 
the catheters were flushed with the heparinized saline before and 
after the experimental sessions throughout the experiments.

Nicotine self-administration
After recovery from surgery, rats were trained to intravenously self-
administer nicotine (0.03 mg/kg/infusion, free base). In the training 
sessions, animals were placed in the experimental chambers and 
connected to a drug delivery system. The daily 1-h sessions were 
initiated by extension of the two levers and illumination of the red 
house light. Once the rats reached the FR requirement on the active 
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lever, an infusion of nicotine was dispensed by the drug delivery 
system in a volume of 0.1 ml in approximately 1 s depending 
on rat body weights. Each nicotine infusion was signaled with 
a presentation of a stimulus (5 s tone/20 s lever light on). The 
stimulus also signaled a 20 s timeout period, during which time 
responses were recorded but not reinforced. Responses on the 
inactivate lever had no consequence. An FR1 schedule was used 
for days 1-5, an FR2 for days 6-8 and an FR5 for remainder of the 
experiments. To test effect of pharmacological stress on nicotine 
self-administration during the maintenance phase, all rats received 
20 daily training sessions. This procedure facilitated responding 
for nicotine self-administration before the start of drug treatment.

To control for possible nonspecific arousal and/or motor-activating 
effect of yohimbine stress, a separate set of rats was trained under 
similar conditions, except that saline rather than nicotine infusions 
were available.

Effect of pharmacological stress on nicotine intake
Based on the number of nicotine infusions/session averaged across 
the final 5 sessions of the 20 daily training sessions, animals were 
divided into two groups. Rats that earned 1-6 nicotine infusions/
session were designated as the LNT rats (n=12), whereas rats taking 
more than 6 nicotine infusions/session as the HNT rats (n=11). 
Following this, the yohimbine test sessions began. Thirty min 
before tests, yohimbine (0, 0.5, 1, 2 mg/kg) was intraperitoneally 
administered using a within-subject, Latin Square design in both 
the LNT and the HNT rats. The test sessions were performed 
under conditions exactly the same as described above and 
scheduled on every other day, i.e., sessions 21, 23, 25 27. Rats still 
received nicotine self-administration sessions without yohimbine 
pretreatment between the test sessions. The control group of 
animals that received saline rather than nicotine infusions (n=11) 
was subjected to the same yohimbine treatment arrangement. 

Statistical analyses
Data were presented as the mean (± SEM) number of lever 
responses and nicotine infusions. A two-way ANOVA was used 
to analyze lever response data averaged across the final 5 sessions 
of the training phase with Group (LNT vs. HNT) as the between-
subject factor and Lever (active vs. inactive) as the within-subject 
factor. The number of nicotine infusions in the final 5 training 
sessions was analyzed using a two-way ANOVA with repeated 
measures with Group (LNT vs. HNT) as the between-subject 
factor and Session as the within-subject factor. The data obtained 
from yohimbine tests were analyzed using one-way ANOVA. 
Differences among individual means were verified using the 
Fisher’s PLSD post hoc tests.
 
Results
Nicotine self-administration in the LNT and HNT rats
In the 20 daily 1-h training sessions, rats of both the LNT and 
the HNT groups readily acquired nicotine self-administration 
behavior. Since there was a small percentage of rats in each 
experiment that showed lower level of nicotine intake, the LNT 
rats (n=12) for this study were pooled across two experiments. 

Correspondingly, the HNT rats (n=11) were also allocated/
matched from these experiments. As shown in Figure 1, there was 
a significant difference between the LNT and the HNT rats in the 
number of lever responses and corresponding nicotine infusions. A 
two-way ANOVA on the lever responses averaged across the final 5 
self-administration sessions before yohimbine tests yielded significant 
effect of Group [F(1,21) = 60.70, p < 0.0001] and Lever [F(1,21) = 
142.66, p < 0.0001] as well as significant Group x Lever interaction 
[F(1,21) = 44.66, p < 0.0001. Furthermore, Fisher’s PLSD post hoc 
tests revealed significant difference between the LNT and the HNT 
rats in the number of responses on both the active (p < 0.01) and 
inactive (p < 0.01) levers. Correspondingly, the LNT rats, compared 
to their HNT counterparts, earned significantly less nicotine injections 
per 1-h session, 4.6 ± 1.1 vs. 16.5 ± 1.2 averaged across the final 5 
sessions. In both groups of rats, the number of responses on the active 
lever was significantly (p < 0.01) higher than on the inactive lever, 
indicating that both the LNT and the HNT rats successfully acquired 
nicotine self-administration behavior? The LNT and the HNT rats 
showed similar body weight gain during these experiments with 328 
± 7 g and 315 ± 10 g respectively as measured after completion of the 
20 daily self-administration training.

Figure 1: Profiles of nicotine self-administration in the LNT (n=12) and 
the HNT (n=11) rats. Top panel shows the number of lever responses 
averaged across the final 5 sessions of the 20 daily 1-h training phase; 
Bottom panel presents nicotine infusions earned in the final 5 sessions. 
Data are expressed as mean ± SEM. * p < 0.05, ** p < 0.01 significant 
difference from the HNT rats.
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Effect of yohimbine on nicotine self-administration in the LNT 
rats
As shown in Figure 2, yohimbine pretreatment significantly 
increased nicotine self-administration. One-way ANOVA on the 
number of responses on the active lever revealed a significant 
effect of Dose [F (3,44) = 3.11, p < 0.05]. Furthermore, Fisher’s 
PLSD post hoc tests revealed significant difference between 2 mg/
kg (p < 0.01) and 1 mg/kg (p < 0.05) vs. saline control condition. 
Correspondingly, yohimbine pretreatment dose-dependently 
increased the number of nicotine injections [F(3,44) = 3.16, p < 
0.05]. However, responses on the inactive lever remained low and 
indistinguishable among different test conditions. Moreover, in 
the subsequent 5 sessions conducted following the yohimbine test 
the active lever responses remained at a significantly higher level 
relative to the pre-test sessions, a level similar to that maintained 
by the HNT rats. Detailed information is shown in Figure 5.

Figure 2: Effect of yohimbine on lever responses (top) and nicotine 
infusions earned (bottom) in the LNT rats (n=12). Thirty min before 
test, yohimbine was intraperitoneally administered in a within-subject, 
Latin Square design on every other day. Data are expressed as mean ± 
SEM. * p < 0.05, ** p < 0.01 significant difference from saline control 
(0) condition.

Effect of yohimbine on nicotine self-administration in the HNT 
rats
Figure 3 shows the lever responses made by the HNT rats after 
yohimbine pretreatment. A one-way ANOVA on the number of 
responses on the active lever did not yield a significant effect of 
Dose [F(3,40) = 0.49, p = 0.69]. Similarly, there was no change 
observed on the inactive lever responses. Besides, the level of 
nicotine self-administration in the 5 sessions following yohimbine 
challenge remained comparable to the pre-test level (Figure 5). 

Figure 3: No effect of yohimbine pretreatment on nicotine self-
administration behavior in the HNT rats (n=11). Thirty min before test, 
yohimbine was intraperitoneally administered in a within-subject, Latin 
Square design on every other day. Data are expressed as mean ± SEM.

Effect of yohimbine in saline-trained rats
During the 20 daily sessions, these rats showed low, but steady, 
levels of responses on the active lever that delivered presentation 
of the stimulus with saline rather than nicotine infusions. The mean 
± SEM number of responses averaged across the final 5 sessions 
before yohimbine tests were 15 ± 3 on the active and 4 ± 1 on the 
inactive levers. One-way ANOVA on the number of responses on 
the active lever obtained from yohimbine test sessions yielded no 
significant dose effect [F(3,40) = 1.10, p = 0.36], indicating that 
yohimbine did not change lever responding in these control rats 
(Figure 4). Further, after yohimbine tests lever responses in these 
animals remained at low levels comparable to pre-test sessions 
(Figure. 5).

Discussion
The current study shows that pharmacological stress induced 
by acute yohimbine administration significantly increases 
operant nicotine self-administration in rats that self-administer 
low levels of nicotine at baseline. Interestingly, under the same 
testing conditions, yohimbine challenge did not alter nicotine 
self-administration in rats that self-administered relatively high 
levels of nicotine at baseline. These results suggest that stress may 
prompt tobacco smoking in low to moderate smokers, which in 
turn could increase the prevalence of heavy smoking and nicotine 
dependence. Moreover, it is recommended that the low nicotine-
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taking animals may serve as good subjects for investigation on 
the risk factors precipitating tobacco smoking and the transition to 
nicotine addiction.

For proper interpretation of these behavioral data, there are two 
potential confounding factors that need to be addressed. One is 
the possible nonspecific arousal effect of yohimbine on locomotor 
activity. The other is that yohimbine might have produced an 
enhancing effect on the lever responses depending on the level of 
baseline responses, i.e., facilitating responses when the pre-test 
responses were low. The latter has been reported in literature. For 
example, a partial NMDA agonist D-cycloserine was found to 
decrease nicotine self-administration in rats with low but not high 
baseline levels of response [70]. To rule out these confounding 
factors, this study included a control group. For the rats of this 
control group, active lever responses on a FR5 schedule resulted in 
delivery of saline rather than nicotine, together with presentation 
of the stimulus that was used as nicotine cue in the nicotine-trained 
rats. As shown in figure 5, these rats emitted very low (lower than 
that maintained by the low nicotine-taking rats) but steady level 
of responses on the active lever. Pretreatment with yohimbine 
did not change lever responses in these rats as shown in figure 
4. Together with the lack of effect of yohimbine in the rats that 
had already developed high level of nicotine self-administration as 
shown in figure 3, these control data negate any nonspecific action 
of yohimbine. Therefore, the pharmacological stress induced by 
yohimbine treatment selectively increased lever responses for 
nicotine self-administration in the LNT rats.

In drug self-administration literature, a lot attention has been 
paid to the predisposing traits such as response to novelty [53-
57], anxiety levels [58], and consumption of sucrose [59-60]. 
Differences in these traits have been found to co-vary with levels 
of self-administration of various drugs of abuse. For instance, rats 
showing relatively high levels of loco motor response to novel 
environments acquire nicotine self-administration more readily 
and have higher breaking points for nicotine under progressive-
ratio schedules of reinforcement than do rats with lower loco motor 
responsiveness to novelty [55]. However, using such pre-existing 
traits as a drug intake predictor calls for debate because negative 
observations have been reported. For example, [56] did not find 
any influence of anxiety level on the preference and consumption 
of nicotine in mice in a free choice, home cage nicotine-drinking 
procedure. The degree of stress reactivity did not alter operant 
nicotine self-administration in a nose-poke procedure in mice 
selectively bred for different stress response [71]. Interestingly, in 
the latter study [71], reinstatement of nicotine-seeking behavior 
induced by foot shock stress was observed only in the mice with 
highest stress reactivity. That finding was in line with human 
studies showing that acute psychological stress usually increased 
smoking desire [7,72-75] but not the amount of smoking if allowed 
to smoke [75]. The present study for the first time used the level of 
nicotine intake as a preexisting condition to test how acute stress 
changes nicotine self-administration in the maintenance phase. The 
results suggest that the level of nicotine consumption may present 
a new measurement that can be used to predict how stress changes 

Figure 4: No effect of yohimbine pretreatment on lever responses in the 
rats (n=11) that had never self-administered nicotine. Responses on the 
active lever resulted in saline infusions and presentations of the stimulus. 
Data are expressed as mean ± SEM.

Figure 5: Top panel shows the sustained high level of nicotine self-
administration behavior after exposure to yohimbine challenge in the 
LNT rats (N=12). For comparison, active lever responses emitted by the 
HNT rats (n=11) and the saline control counterparts (n=11) are shown. 
Bottom panel presents the number of nicotine infusions averaged across the 5 
sessions following yohimbine challenge. Data are expressed as mean ± SEM. 
** p < 0.01 significant difference from both the pre-yohimbine condition of 
the HNT rats and the post-yohimbine condition in the LNT rats.
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drug intake. Obviously, more work on the issue will be warranted.

Acute pharmacological stress immediately increased nicotine 
self-administration in the LNT rats to a level comparable to that 
maintained by the HNT rats. As such, stress seemed to eliminate the 
pre-existing difference in nicotine intake between the LNT and the 
HNT rats. This finding is in line with previous reports showing that 
systemic administration of corticosterone can eliminate difference 
in self-administration of cocaine and amphetamine between rats 
that differed in response to novelty [76,77]. Taken together, these 
studies and the current data suggest that stress acted to equalize 
drug consumption across subjects that initially self-administered 
different amount of drugs of abuse. Even more significant is the 
find that after acute yohimbine challenge the LNT rats showed 
sustained high level of nicotine intake similar to the of the HNT 
counterparts. That means that exposure to stress has transformed 
the LNT into HNT rats. If the LNT rats are comparable to social 
smokers or light smoking whereas the HNT rats represent the heavy 
smokers, it is conceivable that exposure of stressful life events 
may prompt smoking in light smokers and thereby lead to heavy 
tobacco smoking. Therefore, stress may serve as an important risk 
factor for the transition from social smoking to heavy smokers or 
nicotine addiction.

One of the most prominent effects of stress is the activity of the 
hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis has 
been implicated in the process of drug addiction including tobacco 
smoking [78-81]. Nicotine has been shown to produce changes 
in the HPA axis functions. Acute nicotine self-administration 
activates the HPA axis [82-85]. Effects of nicotine taken by 
operant self-administration procedures seem to be complex, from 
modest increase to suppression of the HPA functions [86-90]. It 
is postulated that the HNT rats compared to the LNT counterparts 
may have a blunted HPA response to stress, which might underlie 
the inability of yohimbine to facilitate nicotine intake in the HNT 
rats. In contrast, yohimbine may have substantially activated the 
HPA axis and thereby increased nicotine self-administration. 
Unfortunately, there was a limitation in the experimental design, 
which lacked measurement of HPA hormones in response to 
the yohimbine challenge. The role of HPA response to stress in 
nicotine intake between the LNT and HNT subjects deserves 
future investigation.

Increasing evidence suggests that both genetic and environmental 
factors, especially interactions between these factors contribute to 
individual vulnerability to drugs of abuse [91-94]. The difference 
in nicotine consumption between the LNT and HNT rats may 
reside in genetic background of these animals. Such different 
genetic backgrounds may render the subjects to distinct profiles 
in terms of stress sensitization of the reinforcing properties of 
nicotine, a phenomenon reported from animal research [83,95-98] 
and indicated by studies in human smokers [99,100]. In addition, our 
data showing a facilitating effect of acute pharmacological stress on 
nicotine self-administration only in the LNT rats may in fact represent 
an interaction between the genetic and environmental factors.

Conclusions
The present study, using a rat model of nicotine self-
administration, examined effect of acute pharmacological stress 
on nicotine intake with an emphasis on the comparison between 
rats that initially showed significantly different levels of nicotine 
self-administration. The results demonstrated that yohimbine 
challenge increased nicotine intake in the LNT rats but did not 
alter nicotine self-administration in the HNT rats. Importantly, 
after exposure to the yohimbine-induced stress, the heightened 
nicotine self-administration was sustained at a level comparable 
to that maintained by the HNT rats. These findings indicate that 
stress exposure transforms the LNT rats into the HNT subjects, 
suggesting that stressful life events may be particularly effective 
in prompting tobacco smoking in light to moderate smokers and 
therefore contribute to the high prevalence of heavy smokers 
and nicotine addiction. This is in line with previous reports that 
stressful life events contribute to the development of drug use 
and addiction [98,101-104]. As such, it is proposed that reducing 
stress levels in daily life may prove to be an effective approach to 
prevention of nicotine addiction.
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