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Introduction
Many experimental and theoretical researchers have been interested 
in the magnetic properties of nearly ferromagnetic metals [1-15]. 
Kawakami and Okiji examined the minimum of the temperature 
dependence of the magnetic susceptibility based on the degenerate 
impurity Anderson model by the exact solution. They found that 
the orbital degeneracy leads to the minimum [16].

Ishigaki and Moriya studied the effect of zero point spin 
fluctuations [17]. Moriya [18] and Yamada [19] investigated 
the relationship between metamagnetism and the minimum 
of the temperature dependence of the inverse of the magnetic 
susceptibility. They used the Landau expansion of the magnetic 
free energy up to 6th-order term of the magnetisation. However, 
the minimum of the temperature dependence of the inverse of the 
magnetic susceptibility in nearly ferromagnetic metals has yet been 
unanswered theoretically where it appears in YCo2, Pd, UPt3, UTe2, 
and LuCo2 [6]. We use the self-consistent renormalisation theory 
of spin fluctuations in nearly ferromagnetic metals including the 
electronic correlations beyond the random phase approximation. 
In order to explain the minimum of the temperature dependence of 
the inverse of the magnetic susceptibility, we consider the Lanau 
expansion of the magnetic free energy up to the 6th-order term of 
the magnetisation like Moriya [17] and Yamada [18]. The inverse 
of the magnetic susceptibility is investigated. Throughout this 

paper, we use units of energy, such that ℏ = 1, kB = 1, and gµB = 1 
where g is the g-factor of the conduction electron, unless explicitly 
stated. We assume that the c-axis is the axis of easy magnetisation.

This paper is organized as follows: the formulation will be 
provided in section 2.
The results will be supplied in section 3. The conclusions will be 
given in section 4.

Formulation
Let’s begin with the following equation of the inverse of the 
magnetic susceptibility [18,19]
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where F1 and G1 are the coefficients of the Landau expansion of the magnetic free

energy. (1−α)−1 is the Stoner’s enhancement factor. χ0 is the non-interacting magnetic

susceptibility. S2
L(T ) is the square of the local spin amplitude.

In order to consider S4
L(T ) self-consistently, the following dynamical susceptibility

is introduced.

χ(q, ω) =
χ0(q, ω)

1− Iχ0(q, ω)− λ+ βλ2χ0(q, ω)
(2)

where I is the on-site Coulomb coupling. From Eq.(1), λ is determined by the limit

q → 0 and ω → 0
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λ is determined by the following equation.

βχ0λ
2 − λ+ 1− α = 0 (6)

λ =
1−

√
1− 4βχ0(1− α− χ0/χ)

2βχ0

(7)

λ represents the electronic correlation beyond the random phase approximation. We

take the minus sign because S2
L(0) = 0 and λ = 0 when T = 0K. By using Moriya’s

expression [15] based on the single band Hubbard model, the non-interacting dynamical

susceptibility χ0(q, ω) is obtained as follows:

χ0(q, ω) = χ0(0, 0)(1− Aq2 + iC
ω

q
), (8)

 			   (1)

where F1 and G1 are the coefficients of the Landau expansion of 
the magnetic free energy. (1 −α)−1 is the Stoner’s enhancement 
factor. χ0 is the non-interacting magnetic susceptibility. 
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ABSTRACT
We investigated the minimum of the temperature dependence of the inverse of the magnetic susceptibility by 
using self-consistent renormalisation theory of spin fluctuations in nearly ferromagnetic metals that includes 
the electronic correlation beyond the random phase approximation. We used the Landau expansion of the 
magnetic free energy up to the 6th order term of the magnetisation. We found that the inverse of the magnetic 
susceptibility had the minimum at low temperatures at maximum of the square of the local spin amplitude. We 
succeeded in reproducing the Curie-Weiss law at elevated temperatures.
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q and ω are the magnitude of the wave vector and the frequency, 
respectively. The square of the local spin amplitude 

2

6th-order term of the magnetisation like Moriya [17] and Yamada [18]. The inverse of

the magnetic susceptibility is investigated.

Throughout this paper, we use units of energy, such that � = 1, kB = 1, and

gµB = 1 where g is the g-factor of the conduction electron, unless explicitly stated. We

assume that the c-axis is the axis of easy magnetisation.

This paper is organized as follows:the formulation will be provided in section 2.

The results will be supplied in section 3. The conclusions will be given in section 4.

2. Formulation

Let’s begin with the following equation of the inverse of the magnetic susceptibility

[18,19]

1

χ(T )
=

1− α

χ0

− 5

3
F1S

2
L(T ) +

35

9
G1S

4
L(T ) (1)

where F1 and G1 are the coefficients of the Landau expansion of the magnetic free

energy. (1−α)−1 is the Stoner’s enhancement factor. χ0 is the non-interacting magnetic

susceptibility. S2
L(T ) is the square of the local spin amplitude.

In order to consider S4
L(T ) self-consistently, the following dynamical susceptibility

is introduced.

χ(q, ω) =
χ0(q, ω)

1− Iχ0(q, ω)− λ+ βλ2χ0(q, ω)
(2)

where I is the on-site Coulomb coupling. From Eq.(1), λ is determined by the limit

q → 0 and ω → 0

λ =
5

3
F1S

2
L(T ) (3)

βλ2 =
35

9
G1S

4
L(T ) (4)

From Eqs.(3) and (4),

β =
7G1

5χ2
0F

2
1

(5)

λ is determined by the following equation.

βχ0λ
2 − λ+ 1− α = 0 (6)

λ =
1−

√
1− 4βχ0(1− α− χ0/χ)

2βχ0

(7)

λ represents the electronic correlation beyond the random phase approximation. We

take the minus sign because S2
L(0) = 0 and λ = 0 when T = 0K. By using Moriya’s

expression [15] based on the single band Hubbard model, the non-interacting dynamical

susceptibility χ0(q, ω) is obtained as follows:

χ0(q, ω) = χ0(0, 0)(1− Aq2 + iC
ω

q
), (8)

 is

3

q and ω are the magnitude of the wave vector and the frequency, respectively. The

square of the local spin amplitude S2
L(T ) is

S2
L(T ) =

3

2π

∑
q

∫ ∞

0

dω
1

eω/T − 1
Imχ(q, ω). (9)

From Eq.(8), Imχ(q, ω) is

Imχ(q, ω) =
T0

2αTA

ω

u2
1 + ω2

(10)

with

u1 = 2πT0(1/(2γTAχ(0)) + (q/qB)
2), (11)

TA = Aq2B/2,

Γ = A/C,

T0 = Γq3B/(2π)

γ = βχ0λ
2

qB is the magnitude of the zone boundary wave vector. From Eq.(9), S2
L(T ) is

S2
L(T ) =

3T0

αTA

∫ 1

0

dxx3(lnu− 1

2u
− ψ(u)) (12)

where ψ(u) is the digamma function.

y =
1

2αTAχ(0)
, (13)

t = T/T0, u = x(x2 + y/γ)/t. (14)

where y is the inverse of the reduced magnetic susceptibility. From Eqs.(1) and (12),

the equations of the inverse of the reduced magnetic susceptibility are obtained.

y = y0 − y1A(y, t) + y2A
2(y, t) (15)

A(y, t) =

∫ 1

0

dxx3[ln u− 1/(2u)− ψ(u)]

where

y0 =
1− α

2αTAχ0

, (16)

y1 =
15F1T0

2γT 2
A

, (17)

y2 =
315G1T0

2γT 2
A

, (18)

In Eq.(7), we rewrite λ by y and y0.

λ =
1−

√
1− 4βχ0(1− α)(1− y/y0)

2βχ0

(19)

χ0(0) is the non-interacting magnetic susceptibility at the zero temperature. The results

will be provided in the next section.
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χ0(0) is the non-interacting magnetic susceptibility at the zero temperature. The results
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where y is the inverse of the reduced magnetic susceptibility. 
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3T0

αTA

∫ 1

0

dxx3(lnu− 1

2u
− ψ(u)) (12)

where ψ(u) is the digamma function.

y =
1

2αTAχ(0)
, (13)

t = T/T0, u = x(x2 + y/γ)/t. (14)

where y is the inverse of the reduced magnetic susceptibility. From Eqs.(1) and (12),

the equations of the inverse of the reduced magnetic susceptibility are obtained.

y = y0 − y1A(y, t) + y2A
2(y, t) (15)

A(y, t) =

∫ 1

0

dxx3[ln u− 1/(2u)− ψ(u)]

where

y0 =
1− α

2αTAχ0

, (16)

y1 =
15F1T0

2γT 2
A

, (17)

y2 =
315G1T0

2γT 2
A

, (18)

In Eq.(7), we rewrite λ by y and y0.

λ =
1−

√
1− 4βχ0(1− α)(1− y/y0)

2βχ0

(19)

χ0(0) is the non-interacting magnetic susceptibility at the zero temperature. The results

will be provided in the next section.
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In this section, the numerical results are provided by using the 
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the minimum of the temperature dependence of the inverse of the 
magnetic susceptibility at low temperatures t << 1, we use the 
following asymtotic expansion of the digamma function in the 
integrand of Eq. (15).
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Then y2 > y21/(4y0). Fig.1 shows the temperature dependence of y when β = 10−4,

χ0 = 1000[1/K], y0=0.01, y1=1,y2=30(the black line), 50(the red line), 80(the blue line),

respectively. These parameters are typical of nearly ferromagnetic metals [6]. From Fig.

1, the inverse of the reduced magnetic susceptibility has the minimum as function t

at low temperatures. In elevated temperatures it has T -linear dependence. Fig. 2

shows the temperature dependence of λ with the same parameters as Fig. 1. From Fig.

2, the maximum of the temperature dependence of λ corresponds to the minimum of

the temperature dependence of the reduced magnetic susceptibility. In other words, the

minimum of the temperature dependence of the reduced magnetic susceptibility appears

in the maximum of the square of the local spin amplitude. In elevated temperatures, λ

has T -linear dependence.

4. Conclusions

We have studied the minimum of the temperature dependence of the inverse of

the magnetic susceptibility. We have succeeded in producing the minimum of

the temperature dependence of the inverse of the magnetic susceptibility at low

temperatures. At higher temperatures, the inverse of the magnetic susceptibility obeys

the Curie-Weiss law. This theory explain the behaviors of the inverse of the magnetic

susceptibility in Pd, YCo2, UPt3, UTe2, and LuCo2.
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Then y2 > y2/(4y0). Figure 1 shows the temperature dependence of y 
when β = 10−4, χ0 = 1000[1/K], y0=0.01, y1=1,y2=30(the black line), 
50(the red line), 80(the blue line), respectively. These parameters 
are typical of nearly ferromagnetic metals [6]. From Figure 1, the 
inverse of the reduced magnetic susceptibility has the minimum 
as function t at low temperatures. In elevated temperatures it has 
T -linear dependence. Figure 2 shows the temperature dependence 
of λ with the same parameters as Figure 1. From Figure 2, the 
maximum of the temperature dependence of λ corresponds to the 
minimum of the temperature dependence of the reduced magnetic 
susceptibility. In other words, the minimum of the temperature 
dependence of the reduced magnetic susceptibility appears in the 
maximum of the square of the local spin amplitude. In elevated 
temperatures, λ has T -linear dependence.

Conclusion
We have studied the minimum of the temperature dependence 
of the inverse of the magnetic susceptibility. We have succeeded 
in producing the minimum of the temperature dependence of the 
inverse of the magnetic susceptibility at low temperatures. At 
higher temperatures, the inverse of the magnetic susceptibility 
obeys the Curie-Weiss law. This theory explain the behaviors of 
the inverse of the magnetic susceptibility in Pd, YCo2, UPt3, UTe2, 
and LuCo2.
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Figure 1: The temperature dependence of the inverse of the reduced magnetic susceptibility y when α = 0.98, β = 10−4, χ0 = 1000[1/K], y0=0.01, 
y1=1,y2=30(the black line), 50(the red line), 80(the blue line), respectively.

Figure 2: The temperature dependence of the λ when α = 0.98, β = 10−4, χ0 = 1000[1/K], y0=0.01, y1=1,y2=30(the black line), 50(the red line), 80(the 
blue line), respectively.
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