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ABSTRACT
Findings of publications on burn´s management from a 2012 study in The Lancet showed that a burn size of 
more than 60% total body surface area burned (an increase from 40% a decade ago) is associated with risks and 
mortality. Similar data have been obtained in adults and elderly people who have been severely burned. Here is 
an update on recent and future developments in burn care in children.

*Correspondence:
Ana María Navío Serrano, Specialist in Emergency Medicine as 
well as Critical Medicine, Spain.

Received: 04 Nov 2024; Accepted: 20 Dec 2024; Published: 29 Dec 2024

Keywords
Pediatric burns, Burn management 2024, Advances in burn care, 
Burn injury treatment in children, Pediatric wound care.

Introduction
Major burn injury can be classified according to cause and depth of 
the burns. Every year more than half a million burn injuries happen 
in the USA [1]. Most of these injuries are not severe, although 
about 50 000 patients with burns still need admission and treatment 
at a burn centre or burn hospital. Because the effects of burns are 
disabling, substantial the specialty has grown in full swing which 
has greatly improved outcomes of patients with burns [2-4]. And 
that´s the main reason why specialised burn centres have shown 
up, and also, advances in resuscitation, protocols to follow up 
and specialised critical care, improved coverage of wounds and 
treatment of infections, better treatments for inhalation injury, and 
the burn-induced hypermetabolic response [4,5]. 

Another major advance are the currently initiatives by burn care 
providers to hold consensus conferences and implement specific 
definitions of disease processes in patients who have been severely 
burned, which will allow appropriate multicentre trials [6]. 

All these changes have substantially improved morbidity and 
mortality after burn injury.  A recent study in The Lancet showed 
that the burn size associated with increased risk of mortality at 
a specialised centre increased from 40% total body surface area 
(TBSA) burned to more than 60% TBSA burned in the past decade 
or so [5]. 

The pathophysiological response to burn injury and the mortality 
of patients with burns are proportional to the extent of burn, 
following a sigmoid dose-response way, and these responses are 
not an all or none phenomenon beginning at 60%. The cutoff for 
these pathophysiological responses is around 30% TBSA burned in 
children (aged 0–18 years), 20% in adults (aged 18–65 years), and 
about 15% in elderly people (older than 65 years). Nevertheless, 
severe burns still damage almost every organ in the body, resulting 
in deep disable complications or even death [2,5-7]. Each year, 
almost 4000 cases of burns result in death from complications 
related to thermal injury [2,8,9]. The cause of deaths after suffering 
a burn can happen immediately after the injury or weeks later 
as a result of infection or sepsis, multisystem organ failure, or 
hypermetabolic catabolic responses [5,10].

In the last decade, the cause of death has thoroughly changed [10]. 
The major cause of death in patients who had been severely burned 
and admitted to a burn centre, ten years ago was anoxic brain 
injury, followed by sepsis and multiple organ failure. Nowadays, 
the major cause of death in burned paediatric patients is sepsis 
followed by multiple organ failure and anoxic brain injury [10]. 
This change in the cause of death needs a review of the basic 
understanding and treatment approaches to improve post-burn 
morbidity and mortality. Patient outcome and survival are directly 
related to the quality of the complex care that burn patients receive.

We can define three stages:
1.	 Initial care at the scene, pre-hospital care, and the early 

hospital phase: adequate and timely response, the best hospital 
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is not the nearest but the best prepared for treating these burns, 
resuscitation, and admission to a burn centre, escharotomies 
or fasciotomies, resuscitation, and treatment of inhalation 
injury. 

2.	 After hospital phase: wound care including burn surgeries, 
infection control, maintenance of organ function, and 
attenuation of hyper metabolism. 

3.	 Long-term phase: persistent hypermetabolism, reconstruction, 
and rehabilitation.

There are the standard and novel treatments in these topics:
Burn shock and resuscitation
The American Burn Association recommendations on the 
management of a patient with burns starts after emergency medical 
response teams are called and the patient is transported to a burn 
centre. The stabilization of the patient is primordial. 

The uselessness in adults or elderly patients with burns is usually 
determined by the sum of age (years), burn size (%), and the 
presence or absence of inhalation injury (±17), with values of 
greater or equal to 140–150 being indicative of futility [11], but 
focusing on paediatric care there is no futility in children except in 
very rare instances. TBSA full-thickness burn. Once the decision 
to treat is made, the initial management and therapeutic goal is 
preservation of limbs and prevention of organ failure, which 
begins with well-established recognition of injury severity, first-
care protocols, and surgical interventions. We need an accurate 
resuscitation [2,4,12-14]. 

The most frequent used formula is the Parkland Formula [13], 
which provides the total volume of crystalloid to be given over 
the first 24 h (4 mL/kg bodyweight/% TBSA burned) [12,14]. 

Although, recent data suggest that the Parkland Formula provides 
non correct estimates of fluid requirements in patients with large 
and deeper burns, inhalation injury, delays in resuscitation, 
alcohol or drug use, and electrical injury, resulting in inadequate 
and inappropriate resuscitation [12,15]. The catastrophic events 
associated with under-resuscitation include multiple organ 
failure and death. Over-resuscitation induces a fluid creep with 
its complications such as pulmonary oedema, pleural effusions, 
pericardial effusions, abdominal compartment syndrome, 
extremity compartment syndrome, and con version of burns to 
deeper wounds [12,13,16,17]. And over hydration in patients with 
burns increases the risk of acute respiratory distress syndrome, 
pneumonia, blood stream infections, multiple organ failure, and 
death [18].

The known endpoints of urine output (0·5–1 mL/kg bodyweight/h), 
mean arterial pressure (>65 mm Hg), normal base excess, 
and lactate concentrations are not always accurate and can be 
misleading [13,15,18]. No better physiological markers exist that 
enable adequate resuscitation, and so, these parameters remain the 
gold standard. New tools to improve and individualise resuscitation 
include use of thermal dilution catheters (PiCCO, Philips, UK) and 
computer-assessed closed the resuscitation [14,19-21]. There are 
not been fully established in clinical attendance.

Crystalloids have been compared with colloids or other means 
of resuscitation. So far, no large prospective randomised trial 
has been done to establish whether crystalloids are better than 
colloids in resuscitation but most burn surgeons use crystalloids 
(eg, Ringer’s lactate) and add colloids (eg, albumin) [13,22]. Fresh 
frozen plasma, which is used in patients with trauma, is not given 
to patients with burns because experimental and clinical trials offer 
the efficacy of the fluid have not been done in children patients. 
Hypertonic saline showed some promise in small studies of 
patients with burns [2], but it does not improve outcome in patients 
with traumatic brain injury [23,24]. Resuscitation has profoundly 
evolved over the past two decades and will continue to do so.

We should keep an accurate oxygenation and treatment of 
inhalation injury. A marked proportion of fire-related deaths are 
not attributable to burn injury, but to the toxic effects of airborne 
combustion byproducts [15,25-27]. Recent studies suggest that 
between 20% and 30% of all severe burns are associated with 
inhalation injury and that between 25% and 50% of patients die 
if they need ventilator support for more than 1 week after burn 
[2,4,26]. Inhalation injury increases mortality 15,26,28 and in 
most cases, needs endotracheal intubation, which increases the 
incidence of pneumonia. Early detection of bronchopulmonary 
injury is crucial to improve survival. Clinical signs of inhalation 
injury are quite different vary [15,26], but when the patient has 
been exposed to smoke in an enclosed area and has physical 
findings of burns on the face, singed nasal vibrissae, bronchorrhea, 
sooty sputum, and wheezing or rales. The best practice to diagnose 
inhalation injury is bronchoscopy with the inhalation injury 
scale of Endorf and colleagues [25]. Patients with inhalation 
injury should not be intubated, nor be treated with prophylactic 
antibiotics. Standard care protocols for inhalation injury include 
bronchodilators (salbutamol), nebulised heparin, nebulised 
acetylcysteine, and for extreme mucosal oedema, racemic 
adrenaline [15,26]. The corticosteroid treatment in several animal 
and clinical studies, mortality increased with corticosteroid 
treatment, and bronchopneumonia was associated with more 
extensive abscess formation [2]. So that, the use of corticosteroids 
is contraindicated. Clinical conclusions in a recent trial confirmed 
findings from previous trials, showing that patients with inhalation 
injury have increased mortality and need longer intensive-care 
unit stays, hospitalisations, and time on ventilation. This trial was 
unique in that the investigators identified the effect of inhalation 
injury on genomic expression in peripheral blood leucocytes. The 
results showed that inhalation injury was associated with only 
subtle alterations in 169 probe sets corresponding to 115 genes, 
which encode proteins known to participate in cell cycle and 
transcriptional control. This finding was confirmed in a study in 
2007,29 which showed that inhalation injury was not associated 
with major inflammatory changes, but with minimum distinct 
changes indicative of a slight immunosuppressive effect. However, 
we need more studies on this topic.

Burn wound closure establishes length of hospital stay, risk of 
infection, and ultimately survival, whereas failure to get the wounds 
closed results in death. Treatment strategies for superficial wounds 
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must be differentiated from treatment plans for deeper wounds. 
The most important factor in the improvement of patient outcome 
has been the implementation of early excision and grafting of burn 
wounds, which was first described by Jankovic in the 1970s [30]. 
If the source of stress and inflammation is removed early, surgical 
blood loss is reduced and survival is markedly improved [31-33]. 
The gold standard is to cover these wounds with autografts, either 
as a sheet or meshed skin with or without coverage of allograft 
(cadaver skin), or synthetic materials. Several new strategies will 
come in no longer future.

Partial-Thickness Burns
Partial-thickness burns can be superficial or deep burns 
Superficial wounds usually heal between 7 and 14 days, whereas 
complete reepithelialisation of deep dermal burns can take up to 
4–6 weeks, with scarring often resulting from the loss of dermis. 
A large variety of topical creams and agents are available for 
treatment, and many are silver based for anti-infective effects. 
Recent studies support the use of synthetic and biosynthetic 
membranes Biobrane (USA) established in 1982, and Suprathel 
(Germany) [34,35]. These membranes decrease the number of 
dressing changes, and the amount of pain drugs associated with 
these dressing changes. Several studies of Biobrane its efficacy 
for superficial burns [36,38]. Suprathel is a synthetic copolymer 
containing more than 70% DL-lactide. Findings from prospective 
randomised clinical studies of partial-thickness burns and split-
thickness donor sites have shown that Suprathel is associated with 
less pain than other commercially available membranes, although 
wound healing times and long-term scar qualities are similar 
between this synthetic membrane and other membranes [34]. 

A novel approach to burn wound coverage is the use of biological 
membranes. Human amniotic membrane has a long history of 
use as a wound dressing but is a temporary wound covering, not 
as a skin transplant. Some of the benefits of amnion are that it 
is thin, pliable, adhesive, but not prone to sticking, and easily 
removed. In a recent prospective study of burns in children by 
Branski and colleagues [39], amnion showed outstanding wound 
healing properties and produced excellent long-term cosmetic 
results. The most interesting point of amniotic membrane is that 
it contains stem cells, which can be applied in various ways to 
create new treatment approaches. These approaches will be further 
investigated in prospective clinical trials.

Bioengineered approaches have also been tested for use in 
patients with partial-thickness burns. include keratinocyte-fibrin 
sealant sprays, fibrin sealant-containing growth factors, and cell 
suspensions. Full-thickness deep burns are treated by excision 
and coverage with autograft. As already mentioned, if complete 
autografting is not possible because the burn is large, allograft or 
other dermal or epidermal substitutions are needed. The oldest and 
best studied dermal substitute is Integra (Integra Life Sciences 
Corporation, Plainsboro, NJ, USA), which was developed by a 
team led by surgeon John Burke from the Massachusetts General 
Hospital (Boston, MA, USA) and by scientist Ionnas Yannas 
from the Massachusetts Institute of Technology (Cambridge, 

MA, USA) [40,41]. Integra is composed of bovine collagen 
and glycosaminoglycans, which allow fibrovascular ingrowth. 
And it is an effective method for burn surgeons and results in 
excellent cosmetic and functional outcomes [39,42]. Another 
dermal analogue available for the treatment of full-thickness 
burns is Alloderm (Life Cell Corporation, Branchburg, NJ, USA). 
Alloderm consists of cadaveric dermis devoid of cells and epithelial 
element. Dermal analogue is used in a similar way to other dermal 
analogues, and it has produced favourable results [43].

After the potential of dermal substitutes was recognised, the trend 
became to produce epithelial skin substitutes with or without a 
dermis. Cultured epithelial autografts became a surgical option 
in the management of patients with massive injuries involving 
more than 90% TBSA burned. Cultured epithelial autografts are 
created in vitro from autologous keratinocytes and as the name 
suggests, consist of keratinocytes. The promise of this technique 
has not been fully realised because of costs and the low quality of 
the neo-skin [44]. A possible improvement over cultured epithelial 
auto grafts is ReCell (Avita Medical, Royston, UK). This spray 
contains autologous keratinocytes, melanocytes, fibroblasts, and 
Langerhans cells that are harvested from a split-thickness biopsy. 
ReCell is sprayed onto the wound, which is usually grafted with 
widely meshed autograft. Positive findings from small animal 
studies and clinical trials need to be confirmed in larger randomised 
multicentre trials [45,46]. This ReCell trial is in progress and 
results are expected by 2014.

Another very promising bioengineered approach is the combination 
of autologous keratinocytes and Integra, known as cultured skin 
substitute. Boyce and col leagues first described this method in the 
1990s [47-50]. The healing and take were very good, but cultured 
skin substitute had several issues: spotty pigmentation, a long 
production time, and high overall costs. Many researchers consider 
these matrices to be the best substitute for acellular human dermal 
matrices in the future [51,52]. Three acellular porcine dermal 
matrices are on the market: Permacol (Covidien, Ireland), Strattice 
(Kinetic Concepts, Kidlington, UK), and Xenoderm (Healthpoint 
Biotherapeutics, Fort Worth, TX, USA). The efficacy of these 
dermal matrices needs to be proven in clinical trials.

Stem cells represent a new hope in the management of burns. 
These cells play an important roll in wound healing, both locally 
and systemically, and several of the mechanisms underlying their 
actions in wound healing have been described. In human beings, 
stem cells can be found in adipose tissue, bone marrow, umbilical 
blood, and the blastocyst mass of embryos [53,54]. Stem cells can 
be used to regenerate dermis and expedite re-epithelialisation and 
would allow them to be transplanted with relative ease [55,56]. 
Stem cells present in the bone marrow migrate to tissues affected 
by injury and help the healing and regeneration process [54]. 
Embryonic human stem cells can be differentiated into keratinocytes 
in vitro and stratified into an epithelium that resembles human 
epidermis [57]. This graft can then be applied to open wounds on 
patients with burns as a temporary skin substitute while autograft 
or other permanent coverage means become available.
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Facial Transplantation
There´s no evidence that standard treatment for severe facial 
burns offer improvements in function or scar outcome. These 
patients frequently become socially isolated, and many suffer 
from psychological disorders and phobias [58,59]. These 
patients usually need multiple reconstructive procedures under 
conditions in which minimal normal tissue (secondary to burns 
in other areas) is available. Facial transplantation in such patients 
can offer the possibility of improved quality of life. Following 
the lead of a surgical team in Amiens, France, in 2005 several 
groups in Europe, China, and the USA have successfully done 
composite tissue allotransplantation [60,61]. This transplantation 
of donor facial tissue allows for the best possible functional and 
aesthetic outcome. Antirejection drug regimens for solid organ 
transplantation are well established [58,59]. And this new treatment 
has unique psychological and ethical challenges that need to be 
addressed by a burn team [62]. Once the large challenges posed by 
facial transplantation are overcome, this will become a promising 
treatment for patients with serious facial burns [63].

Hypermetabolism
The hypermetabolic response is associated with severe alterations 
in glucose, lipid, and amino acid metabolism [3,7,64,65]. 

Hypermetabolism leads to severe catabolism and a protein 
breakdown in muscles and organs, leading to multiple organ 
dysfunction. So that, hypermetabolism, organ function, and 
survival, seem to be close. 

The burn-induced hypermetabolic response that happens in an 
early phase (48 h after burn) and flow phase (>96–144 h after 
burn) is profound, extremely complex, and most likely induced 
by stress and inflammation [3,7,64,65]. and it has to do with 
increases in catecholamines, glucocorticoids, glucagon, and dopa-
mine secretion [66-73]. Therefore, coagulation and complement 
cascades and cytokines, endotoxin, neutrophil-adherence 
complexes, reactive oxygen species, and nitric oxide can modulate 
the hypermetabolic response [74]. 

The hypermetabolic response seem to prolonged hypermetabolism 
with changes in glucose, lipid, and amino acid metabolism [7,64]. 
Recent studies show that burn-induced hypermetabolism seems to 
last a much longer time, as seen by a 3 year increase in energy 
requirements, catecholamines, urine cortisol, and serum cytokines, 
and impairment in glucose metabolism and insulin sensitivity 
[7,64,75]. These results underscore the importance of long-term 
follow-up and treatment of individuals with serious burns.

The hypermetabolic response involves glucose metabolism with 
insulin resistance and hyperglycaemia and lipid metabolism with 
increased lipolysis [76-83]. At first, the glucose level increases 
and so the lactate [84,85].  Hyperglycaemia in patients with 
burns is associated with increased frequency of infections, sepsis, 
incidence of pneumonia, catabolism, hypermetabolism, and most 
importantly, mortality [76-79,86,87]. Fatty liver is very common 
after burn injury and is associated with an increase in clinical 
morbidities and metabolic alterations. Findings from pathology 

analyses and spectroscopy studies have shown that children 
with burns have a three times to five times increase in hepatic 
triglycerides and it is associated with infection, sepsis, and poor 
outcome [80,88-92].

Treatment of The Hypermetabolic Response
Treatment options include pharmacological and non-
pharmacological strategies [3]. 

The goal of nutritional support is to provide an adequate energy 
supply and the nutrients necessary to maintain organ function and 
survival [93]. Early adequate enteral nutrition relieves catabolism 
and improves outcomes but overfeeding in the form of excess 
calories or protein, or both, is in relation with hyperglycaemia, 
carbon dioxide retention, fatty infiltration of organs, and azotaemia 
The energy requirements of patients with burns are estimated with 
equations that incorporate body mass, age, and se which are based 
on patient-specific factors, caloric requirements can still be greatly 
overestimated, increasing the risk of overfeeding [96,97]. The 
adapted Toronto equation seems to be the best formula to calculate 
resting energy expenditure [98]. An adequate nutrition is essential 
and should be initiated within 12 h after injury [99].

Supplementation of single amino acids, especially alanine and 
glutamine, is controversial. After burn injury, glutamine is 
quickly depleted from serum and muscle [100,101]. However, this 
depletion happens mainly intracellularly, and effective delivery of 
glutamine to the cells is very difficult, but it seems to diminish 
the incidence of infection, length of hospital stay, and mortality 
[100,101]. A multicentre trial (REDOX; NCT00133978) is 
addressing this question, and the results are expected in the next 
4–5 years; but the first data shows that, in critically ill patients, 
glutamine has no benefit in terms of outcomes [102]. And dietary 
components that have gained more recent attention are vitamins, 
micronutrients, and trace elements [103]. Replacement of vitamins 
reduces morbidity in patients with severe burns [104-110].
 

Non-Pharmacological Strategies
Early excision and grafting has substantially reduced basal energy 
expenditure, mortality, and costs [2,31-33111]. The early excision 
of burn wounds diminishes burn-induced inflammatory and stress 
responses, and in turn decreases hypermetabolism.

Providing patients with burns with physical therapy is a very 
important intervention that can ameliorate metabolic disruptions 
and prevent contractures of the burn wound. Progressive resistance 
exercises have been shown to promote muscle protein synthesis, 
increase body mass, strengthen muscles, and build endurance 
resistance exercises are safe for burned children who do not have 
exercise-related hyperpyrexia [96,97,112,113].

Outcome Measures
The goal of intensive burn care is to keep the patient alive, 
an outcome that is dependent on coverage of burn wounds, 
maintenance of organ function, control of infection and sepsis, 
and alleviation of hyper metabolism. The ability to predict patient 
outcomes, identify patients at risk, or even individualise patient 
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care is highly desirable. However, there are not predictors that 
would allow for any such identification Serum concentrations 
of interleukin 6, interleukin 8, granulocyte colony-stimulating 
factor, monocyte chemoattractant protein-1, C-reactive protein, 
glucose, insulin, blood urea nitrogen, creatinine, and bilirubin 
were higher in patients who did not survive. The patients also had 
a heightened hypermetabolic response accompanied by a greater 
frequency of sepsis and organ dysfunction [114-145]. These 
findings will enable the development of models that can predict 
patient outcome and treatments to improve patient outcomes. 
Another study on predicting burns mortality was done at the time; 
however, it focused on spline modelling [146]. Findings from this 
study showed that mortality could be reliably predicted by the 
combination of information about protein abundance with clinical 
covariates in a multi variate adaptive regression splines classifier. 
Finally, exciting results are expected from the Inflammation and 
the Host Response to Injury Collaborative Research programme 
by Glue Grant. More than 500 patients with burns have been 
enrolled in this study, and the genomic and proteomic changes 
in patients with various outcomes and morbidities are being 
analysed. Preliminary data suggest that patients who die from 
burns have a distinct genomic profile compared with survivors. 
Similarly, patients with sepsis, pneumonia, multiple organ failure, 
and non-healing wounds all have a different genomic signature, 
suggesting that the genome plays a central part in the determination 
of outcome of an individual. The results of this huge trial will 
be published over the next 3–4 years and could lead to novel 
treatment avenues for patients with severe burns. A substantial 
effort is underway to identify genomic and proteomic predictors 
of good and poor outcome. Such predictors will be indispensable 
for the development of individualised medicine, and we believe 
that the future of burn care is closely linked to understanding of 
these patient trajectories. Nevertheless, survival after burn injury 
depends on implementation of fundamental aspects of burn care 
including wound coverage, infection control, and reduction of the 
hypermetabolic response.

Conclusions
Burn injury triggers pathophysiological responses associated 
with harmful outcomes. New treatment strategies, like early 
excision and grafting, early and adequate nutrition, relieve of the 
hypermetabolic response, treatment of hyperglycaemia, and the 
catecholamine surge with use of β blockers, improved ventilation 
strategies, and exercise make better survival and outcomes in 
patients with severe burns, but we need big multicentre trials with 
protocolised care will improve morbidity and mortality after burn 
injury. Burn care providers cope with new challenges, mostly about 
quality of life and long-term outcomes in these patients. Recently, 
a system was developed by researchers from Shriners Hospital 
in Boston (MA, USA) to assess and quantify several details of 
functional recovery in convalescent patients with burns. This 
system sets up a previous trajectory of various functional indices 
to be identified, which ultimately enables researchers to identify 
changes needed to the rehabilitation programme. In summary, it is 
becoming more apparent that a burn is not over once burn wounds 
are healed, and that profound pathophysiological responses persist 

for a substantially longer time than previously thought [7,64]. Let’s 
make a change in how we treat burns is needed.
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