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ABSTRACT
Aim: Lung cancer, the most frequently diagnosed cancer globally, is the leading cause of cancer-related deaths. 
Due to its increasing prevalence and low survival rates, new biomarkers are needed to diagnose the disease. 
Therefore, this study aims to identify potential genes that may be associated with lung cancer by bioinformatics 
methods using gene expression data of lung cancer and non-tumour tissues, and to classify the data with 
stochasting gradient boosting (SGB), one of the machine learning models, and to determine the genes that may be 
most associated with the disease with variable significance values obtained at the end of the model.

Methods: The data underwent bioinformatics analyses utilizing the limma package within the R programming 
language. During the modeling phase, the SGB model was utilized for classification purposes. The evaluation 
of classification performance was conducted by various measures, including accuracy, balanced accuracy, 
sensitivity, specificity, positive predictive value, negative predictive value, and F1-score. Following the process of 
modeling, the variable importance values were utilized to ascertain the influential genes in relation to the target 
variable.

Results: Based on the outcomes of bioinformatic analysis, a total of 7098 expressions exhibited statistically 
significant variations in gene expression levels between the two groups. The performance metrics derived from 
the SGB model were accuracy (93.5%), balanced accuracy (94.1%), sensitivity (88.2%), specificity (100%), 
positive predictive value (100%), negative predictive value (87.5%), and F1-score (93.8%). Based on the findings 
pertaining to variable importance, it was determined that the AGTR1, TNXB///TNXA, and SPP1 genes exhibited 
significant efficacy in the process of tumorigenesis.

Conclusion: Lung cancer-associated genes have been identified through the utilization of bioinformatics and 
machine learning models. Through conducting thorough research on the discovered genes, it is possible to 
confirm the correctness of their association with the disease and subsequently design target-based treatment 
options for these genes.
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Introduction
Lung cancer, namely bronchogenic malignant tumors originating 
from airway epithelioma, is the most often diagnosed cancer 
globally and the leading cause of cancer-related mortality. 
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Annually, a global estimation of 1.8 million newly diagnosed cases 
of lung cancer is reported. In the year 2012, an estimated 1.6 million 
individuals succumbed to lung cancer, with projections indicating 
a potential rise to 3 million lung cancer-related fatalities by the 
year 2035 [1,2]. The prognosis for lung cancer is generally dismal; 
depending on the disease's stage at diagnosis, the 5-year survival 
rate might range from 4% to 17% [3]. Although the likelihood of 
finding lung cancer has increased due to advancements in non-
invasive testing, only 10-15% of new cases are identified at an 
early stage of the disease [4]. When lung cancer is discovered at 
an advanced stage, there are few therapeutic choices available to 
75% of patients. However, the 5-year survival rate for patients 
with clinical stage IA cancer according to the TNM (tumor-lymph 
nodes-metastasis) classification is only about 60%, suggesting 
that a significant proportion of patients have undetectable 
metastases at this stage of the disease [5-8]. Chest radiography 
and sputum cytology, the two diagnostic modalities currently 
in use, are not sensitive enough to diagnose non-small cell lung 
carcinoma (NSCLC), and tumor markers like carcinoembryonic 
antigen (CEA), CYFRA 21-1, neuron-specific enolase (NSE), or 
squamous cell carcinoma antigen (SCCA) prevent the diagnosis of 
lung cancer at an early stage [4]. These findings highlight the need 
for additional targeted, less intrusive biomarkers that might be 
added to or utilized in place of radiographic techniques to enhance 
the identification and staging of lung cancer [9].

Lung cancer arises from the last stage of multistage carcinogenesis, 
which has progressively more pronounced genetic and epigenetic 
alterations, rather than from the abrupt transformation of bronchia 
epithelioma [6,10]. Today, mutations and genetic mechanisms 
associated with the disease are being investigated through genetic-
based studies that are specific to lung cancer and can enable 
the disease to be diagnosed at an early stage. Since the disease 
is diagnosed at an advanced stage and the survival rate is low, 
knowledge of the underlying mechanisms of the disease will be of 
great benefit to clinicians. The recent advancements and extensive 
adoption of next-generation sequencing (NGS) technologies have 
facilitated genomic analyses aimed at elucidating the etiology of 
cancer. These investigations have unveiled associations between 
diverse malignant tumors and genomic data, thereby enabling the 
discovery of novel molecular markers and intracellular pathways 
implicated in disease progression. Given these advancements, 
these methods have been widely employed to elucidate the 
complete genetic structure of lung cancer [7].

Machine learning (ML) is a specialized domain within the science 
of artificial intelligence that seeks to provide predictions regarding 
novel observations through the process of learning from pre-
existing data, in contrast to conventional statistical methodologies. 
ML plays a crucial role in various health-related domains, serving 
as the fundamental framework for detecting genetic illnesses, 
facilitating early diagnosis of cancer, and identifying patterns 
in medical imaging. Over the past decade, the field of machine 
learning has witnessed significant advancements in performance, 
owing to the increased accessibility of extensive datasets and 

enhanced computational capabilities. This has resulted in notable 
achievements across several domains and scenarios [11,12]. In 
this study, the stochasting gradient boosting (SGB) method will 
be applied to transcript data obtained from tissues from patients 
with lung cancer tumour cells and non-tumour tissues in order to 
take advantage of the superior performance achievements of ML 
techniques.

The aim of this study is to identify potential genes that may be 
associated with lung cancer by bioinformatics methods using open-
access gene expression data obtained from human tumor tissues 
and non-tumor tissues. Our second aim is to classify the disease 
with SGB, which is one of the ML models, using the data set to be 
obtained by determining the genes that show different regulation in 
diseased tissues compared to the non tumor group. Finally, we will 
determine the most important genes that may be associated with 
the target variable lung cancer through the SGB model.

Material and Methods
Dataset
The dataset used in the study is an open-access dataset created by 
taking tumor tissues and non-tumor tissues of patients with lung 
cancer. The dataset included in the research was acquired from 
the National Center for Biotechnology Information (NCBI). The 
data utilized in this study were acquired from the Gene Expression 
Omnibus (GEO) database, specifically identified by the accession 
code "GSE10072".

Bioinformatics and Gene Expression Analysis
Bioinformatics refers to the comprehensive process of gathering, 
retaining, arranging, preserving, scrutinizing, and presenting 
findings derived from the application of theoretical and practical 
principles within fields such as biology, medicine, behavioral 
sciences, and health sciences. Moreover, the primary focus 
of this endeavor lies in the investigation and advancement of 
computational tools and methodologies, with the aim of expanding 
the utilization and manipulation of data acquired through research 
endeavors or the implementation of established protocols. 
Acquired via the process of scholarly investigation or the use of 
established procedures. Bioinformatic analyses are conducted by 
choosing a suitable database and employing a tool that facilitates 
the execution of bioinformatic analysis, aligning with the specific 
biological query, molecule, or structure under investigation. 
The collected data and generated findings from the analyses 
are consolidated, and the subsequent assessments are critically 
examined in the context of the existing literatüre [13].

Alterations in the physiological state of an organism or cell are 
invariably followed by corresponding modifications in the gene 
expression profile. Consequently, the measurement of gene 
expression assumes significant importance across all domains of 
biological research. The DNA microarray technique, which is 
currently under development, is employed for the investigation of 
gene expression. This is achieved via the process of hybridization, 
where mRNA molecules are bound to a densely populated array 
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of immobilized target sequences. Each of these target sequences 
corresponds to a distinct gene.  The impact of chemical substances 
on the regulation of gene expression can provide insights into both 
functional and toxicological attributes. Investigations conducted 
on clinical samples, encompassing both those in good health and 
those afflicted with illness, have the potential to unveil previously 
undiscovered biomarkers [14].

Bioinformatics Analysis Phase
In this study, gene expression analyses were performed on 
trancriptomic data obtained from tumor samples and non-tumor 
samples. The inquiry utilized the limma package, a software tool 
available in the R programming language that enables expression 
analysis [15]. Limma, also known as Linear Models for Microarray 
Analysis, is a software package designed to assess gene expression 
microarray data. Its primary objective is to employ linear 
models to analyze specific experiments and identify differential 
expression. The functions of the packet may be applied to several 
gene expression methods, including microarrays, RNA-seq, and 
quantitative PCR. The Limma software offers the capability 
to yield consistent outcomes, even in scenarios with a limited 
number of sequences, owing to the utilization of Empirical Bayes 
methodologies. The bioinformatic study yielded Log2FC, a metric 
that quantifies the fold change in gene expression differences. 
This metric ranks the genes in descending order of significance. 
Genes that are up-regulated are identified by using a threshold of 
log2 fold change (log2FC) greater than 1, whereas genes that are 
down-regulated are identified by applying a threshold of log2FC 
less than -1.

The distribution of the data utilized in the study was shown through 
the utilization of box plot graphs and expression density graphs. 
The graphs depict samples possessing similar qualities, which 
are shown by the utilization of consistent colors. The researchers 
choose to utilize the Uniform Manifold Approximation and 
Projection (UMAP) graph as a means to visually represent the 
interrelationships among the samples under investigation. The 
utilization of the volcano plot was deemed preferable for the 
purpose of illustrating genes that are differently expressed, both 
in terms of upregulation and downregulation. The volcano plot 
illustrates the relationship between significance and fold-change, 
shown on the y- and x-axes respectively, in a logarithmic base of 
2. This graphical representation facilitates the rapid identification 
of genes that exhibit differential expression. The graph displays 
gene expression levels, with the color red representing up-
regulated genes, blue representing down-regulated genes, and 
black representing genes that exhibit no significant difference in 
expression.

Feature Selection Phase 
The process of variable selection has significant importance in 
predictive modeling procedures, and a crucial aspect of constructing 
a statistical model involves making informed decisions on the 
inclusion of data throughout the modeling phase. Prior to engaging 
with large datasets and computationally expensive models, it 

is imperative to undertake a process of identifying the most 
significant elements within the dataset. This endeavor is crucial 
in order to optimize the efficiency and effectiveness of the study's 
outcomes. Feature selection is a process that aims to identify 
the most influential characteristics that have an impact on the 
dependent variable of a given data collection. The presence of an 
excessive number of explanatory factors might result in prolonged 
calculation durations and the potential for overfitting the data, 
so yielding biased outcomes. Furthermore, the interpretation of 
models constructed with a multitude of variables is a significant 
challenge. Prior to engaging in statistical modeling, it is advisable 
to carefully choose the pertinent factors that exert an influence 
on the dependent variable [16]. Many machine learning and data 
mining techniques may yield suboptimal outcomes when applied 
to large datasets. Hence, these methodologies yield more efficient 
outcomes as the dimensionality is decreased [17].

Gene expression datasets are of considerable size. The computational 
efficiency of modeling analyses is sometimes hindered by the high 
size of gene expression datasets, hence resulting in prolonged study 
durations. The model's performance may be negatively impacted 
due to the issue of excessive dimensionality. If gene expression 
datasets contain an excessive number of genes, a classification 
method has the potential to overfit the training examples and 
fail to generalize well to new samples. In this work, the feature 
selection approach known as Lasso was employed to address 
the aforementioned issues. The LASSO method requires that the 
sum of the model parameters' absolute values be less than a fixed 
value (upper limit). This approach is accomplished by imposing 
penalties on the regression coefficients of the variables, resulting 
in the elimination of some coefficients, reducing them to zero. The 
presence of several variables and few observations in a dataset 
renders this particular circumstance particularly advantageous. 
Moreover, by the elimination of extraneous variables that bear no 
relevance to the response variable, the LASSO technique enhances 
the interpretability of the model and effectively mitigates the issue 
of overfitting [18].

Stochastic Gradient Boosting 
Fridman developed SGB by including randomization into the 
gradient boosting strategy. Using the permutation sampling 
methodology, a sub-sample is randomly picked in each iteration of 
this process. Instead of all students, this sub-sample is utilized to 
compute the current state of the model, minimizing the correlation 
between the constructed trees [19]. Unlike previous ensemble 
learning approaches, this method summarizes each tree (about 100 
to 200 trees) formed as the process runs, rather of constructing 
massive massive trees, and each observation is classified based on 
the most prevalent categorization across trees . The SGB model 
is distinguished from other augmentation strategies by this type 
of separation. Furthermore, this discriminating approach is less 
sensitive to outliers and imbalanced datasets. This approach 
is 5 times quicker than other existing algorithms and has a far 
higher predictive power. Another key element of the model is the 
inclusion of a set of regularization algorithms that can increase overall 
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performance and decrease over-fitting and over-learning [19,20].

Modeling Phase
Before modeling, variable selection was made using the Lasso 
variable selection method. To model with SGB, the data set is 
divided into 70% training data and 30% test data.

In this study, the n-fold cross-validation technique, which is a 
type of resampling approach, was employed to guarantee the 
validity of the model. Specifically, the n-fold cross-validation 
approach involves initially dividing the dataset into n subsets, 
followed by the application of the model to each of these subsets. 
In the subsequent stage, a single component out of the total n 
components is allocated for testing purposes, while the remaining 
n-1 components are utilized for training. In the last stage, the 
cross-validation technique is assessed by computing the average 
of the values obtained from the models.

The performance of the modeling was evaluated using several 
metrics, including accuracy (ACC), balanced accuracy (b-ACC), 

sensitivity (SE), specificity (SP), positive predictive value (ppv), 
negative predictive value (npv), and F1-score. Finally, as a result 
of the modeling test, variable importance values were calculated to 
determine the genes that were most effective on the target variable.

Results
According to the results of biostatistical analysis, the mean age 
was found to be 66.39±7.91 in the tumor group and 65.59±7.67 
in the non-tumor group. There were 23 women and 35 men in the 
tumor group and 15 women and 34 men in the non-tumor group. 
In addition, there were 24 current smokers, 18 former smokers, 
and 16 never smokers in the tumor group, while these numbers 
were 16, 18, and 15 for current smokers, former smokers, and 
never smokers, respectively, in the non-tumor. Additionally, 
no significant relationship was found between the categories of 
the target variable and the categories of the smoking variable 
(p=0.644).

Distribution plots of 58 tumor tissues and 49 non-tumor tissues 
used in the study are given in Figure 1 and Figure 2.

Table 1: Transcripts found to be up-regulated in tumourous tissue samples compared to non-tumourous tissues.
ID Adj.P Val P Value t B Log2FC Gene name
209875_s_at 7,76E-37 5,22E-40 20,99937 80,59894 4,364415 SPP1
37892_at 1,88E-21 3,04E-23 12,72311 42,27889 3,061522 COL11A1
204475_at 5,80E-15 2,47E-16 9,674348 26,46668 2,862036 MMP1
206239_s_at 1,35E-11 9,83E-13 8,079641 18,25491 2,7584 SPINK1
218469_at 6,28E-23 8,05E-25 13,43449 45,88895 2,548363 GREM1
217428_s_at 7,58E-20 1,52E-21 11,96602 38,39089 2,463475 COL10A1
201292_at 2,43E-24 2,41E-26 14,13133 49,37731 2,455963 TOP2A
218468_s_at 2,15E-21 3,51E-23 12,69522 42,13645 2,441458 GREM1
214774_x_at 3,82E-17 1,15E-18 10,69731 31,80171 2,43796 TOX3
201291_s_at 9,97E-22 1,57E-23 12,85174 42,93501 2,422077 TOP2A
204580_at 6,93E-19 1,58E-20 11,51596 36,0616 2,377325 MMP12
212353_at 1,51E-24 1,45E-26 14,23397 49,88675 2,36008 SULF1
202310_s_at 1,18E-17 3,24E-19 10,93855 33,05919 2,328322 COL1A1
216623_x_at 7,82E-18 2,10E-19 11,02106 33,48896 2,311316 TOX3
201884_at 2,31E-11 1,78E-12 7,963586 17,66856 2,285407 CEACAM5

Table 2: Transcripts found to be down-regulated in tumourous tissue samples compared to non-tumourous tissues
ID Adj.P Val P Value t B Log2FC Gene name
210081_at 2,23E-37 7,00E-41 -21,4864 82,58584 -4,41747 AGER
214387_x_at 8,67E-24 9,58E-26 -13,8562 48,00591 -4,04718 SFTPC
203980_at 1,25E-35 1,43E-38 -20,2111 77,32083 -3,83854 FABP4
210096_at 7,41E-24 7,86E-26 -13,8955 48,20255 -3,7098 CYP4B1
204712_at 9,54E-24 1,07E-25 -13,8347 47,89866 -3,68671 WIF1
209613_s_at 1,50E-26 1,09E-28 -15,2246 54,74244 -3,67847 ADH1B
219230_at 1,79E-27 1,15E-29 -15,689 56,97886 -3,57031 TMEM100
205866_at 3,27E-30 1,36E-32 -17,1137 63,67134 -3,5031 FCN3
214135_at 4,15E-30 1,77E-32 -17,0576 63,41307 -3,44641 CLDN18
205200_at 2,59E-37 1,28E-40 -21,34 81,99142 -3,41185 EXOSC7///CLEC3B
209074_s_at 7,20E-41 3,23E-45 -24,014 92,44007 -3,3718 FAM107A
209612_s_at 5,62E-28 3,31E-30 -15,9489 58,2187 -3,3469 ADH1B
204273_at 1,12E-36 8,06E-40 -20,8949 80,16895 -3,16126 EDNRB
213317_at 5,61E-29 2,87E-31 -16,4631 60,64699 -3,08355 CLIC5
217046_s_at 6,22E-37 3,91E-40 -21,0692 80,8856 -3,03769 AGER
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Figure 2: The expression density graph of the samples.

Figure 3: UMAP plot of the samples (Green Dots: Tumor tissues, Purple 
dots: non-tumor tissues).

Figure 3 presents the UMAP graph, which visually represents the 
interrelationships among the samples. The graph illustrates that 
samples with similar features are observed to be grouped together. 
The graph displays tumor tissues samples represented by green 
dots, and non-tumor tissues represented by purple dots.

Based on the examination of gene expression, a total of 7098 
gene expressions were identified to exhibit statistically significant 
changes in their expression levels between the two groups  
(|log2FC| > 1.0, p 0.05). Tables 1 and 2 provide details on the up-
regulation and down-regulation of gene expression in the top 15 
genes, respectively, observed between the two groups.

Figure 4 illustrates the volcano plot, which serves as a visual 
representation of the genes that exhibit differential expression 
between the several groups.

Figure 4: Volcano plot for transcripts in tumor and non-tumor tissues 
(Red dots indicate transcripts that increased, blue dots decreased, and 
black dots showed transcripts whose expression level did not change).

LASSO feature selection method was applied to 22283 transcripts 
together with the target variable (tumor and non-tumor tissues), 

Figure 1: Distribution plot of the samples.
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and as a result, eighteen genes that were determined to explain the 
target variable the most were selected.

Modelling results using 18 genes selected by the SGB method are 
given in Table 3.

Table 3: Values of performance metrics of the SGB model.
Metric Value (%) 
Accuracy 93.5
Balanced Accuracy 94.1
Sensitivity 88.2
Specificity 100
Positive predictive value 100
Negative predictive value 87.5
F1 score 93.8

The following performance metrics were calculated for the SGB 
model: accuracy, balanced accuracy, sensitivity, specificity, 
positive predictive value, negative predictive value and F1 score. 
These metrics were 93.5%, 94.1%, 88.2%, 100%, 100%, 87.5% 
and 93.8% respectively.

The graph of the variable importance of the genes used in the 
modelling showing their success in explaining the target variable 
is given in Figure 5.

According to the ROC analysis performed with the 3 most 
effective genes on the target variable according to the variable 
significance values, the AUC value of AGTR1, which is the power 
to distinguish between tumour and non-tumour tissues, was 0.997, 
TNXB///TNXA was 0.994 and SPP1 was 0.981. ROC analysis 
results were shown in Figure 6.

Figure 6: Graph of ROC analysis results.

AGTR1 SPP1TNXB///
TNXA

Figure 5: Variable importance graph for the most effective variables in explaining the target variable.
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The variable importance values and the results obtained from 
ROC analysis support each other and these three genes can be 
biomarkers.

Discussion
Lung cancer is the most often diagnosed form of cancer globally 
and represents the leading cause of cancer-related mortality. The 
prognosis for lung cancer is generally unfavorable, with a significant 
proportion of patients (about 75%) being diagnosed during the 
advanced stages of the disease. The diagnostic instruments now in 
use exhibit insufficient sensitivity and fail to facilitate early-stage 
disease diagnosis. Hence, the exploration of novel approaches for 
the timely and precise detection of lung cancer is imperative in 
order to optimize its therapeutic interventions. Lung cancer is a 
disease that arises from a complex process known as multistage 
carcinogenesis, characterized by a progressive accumulation 
of genetic and epigenetic alterations over time. The utilization 
of screening methods to detect certain genetic markers has the 
potential to facilitate the early-stage detection of lung cancer [7]. 
The progress in molecular techniques and analytical platforms has 
facilitated the examination of genomic alterations that contribute 
to the onset of cancer, namely the identification of potential 
biomarkers associated with lung cancer.

The aim of this study is to identify the genes that are important 
in the development of lung cancer by using bioinformatic 
analyses and ML methods, which can produce highly successful 
results in many fields. For this purpose, bioinformatics analyses 
were performed using an open access dataset and genes that are 
differentially expressed in cancerous tissue compared to non-
tumour tissue were identified and modelled with SGB, one of the 
machine learning methods.

When the results of bioinformatic analyses were examined, it 
was determined that 7098 genes showed different regulation (up 
or down) in lung tumours compared to non-tumor tissues. SPP1 
gene showed 20.53 fold up-regulation in lung tumor tissues 
compared to normal tissue samples. Likewise, COL11A1, MMP1, 
SPINK1, GREM1, COL10A1, TOP2A, GREM1, TOX3, TOP2A, 
MMP12, SULF1, COL1A1, TOX3, and CEACAM5 genes had 
up-regulated gene expression of 18.33, 7.26, 6.72, 5.81, 5.50, 5.46, 
5.42, 5.38, 5.35, 5.16, 5.13, 4.99, 4.95, and 4.85 fold, respectively. 
AGER gene showed 21.25 fold down-regulation in gastric tumor 
samples compared to normal tissue samples. Likewise, SFTPC, 
FABP4, CYP4B1, WIF1, ADH1B, TMEM100, FCN3, CLDN18, 
EXOSC7///CLEC3B, FAM107A, ADH1B, EDNRB, CLIC5, and 
AGER genes had down-regulated gene expression of 16.44, 14.22, 
12.99, 12.81, 12.72, 11.87, 11.31, 10.85, 10.62, 10.33, 10.12, 8.93, 
8.45, and 8.16 fold, respectively.

Before modelling with SGB, 18 genes were selected by the variable 
selection method and these genes were used in the modelling. As 
a result of modelling with these genes The model gave various 
performance indicators such as accuracy (93.5%), balanced 
accuracy (94.1%), sensitivity (88.2%), specificity (100%), positive 

predictive value (100%), negative predictive value (87.5%) and 
F1-score (93.8%). 

As a result of modelling, variable importance values were calculated 
to determine the genes that are effective on lung cancer. The results 
obtained according to the calculated variable importance values 
are as follows. AGTR1, TNXB///TNXA, SPP1, PLPP2, SFTPC 
genes were found to be the genes most commonly associated with 
lung cancer, respectively. According to the results of the ROC 
analysis performed with the 3 of these genes with the highest 
variable importance values, it can be said that these three genes 
distinguish cancerous and non-cancerous tissues quite well. When 
bioinformatics and modelling results and ROC analysis results are 
considered together, it can be said that AGTR1, TNXB///TNXA, 
SPP1 genes are potential genes that can be biomarkers.

In a study, the relationship between AGRT1 and lung 
adenocarcinoma was investigated.  The findings from enrichment 
analysis followed by in vitro validation suggest that AGTR1 may 
be involved in the pathogenesis of LUAD through the PI3K/
AKT3 signalling pathway [21]. In a separate investigation, it was 
observed that the SPP1 gene had significantly elevated levels of 
expression in lung cancer tissues in comparison to normal tissues. 
The elevated expression of SPP1 was additionally correlated 
with tumor grade and worse clinical outcome [22]. A separate 
investigation has demonstrated a associated between SPP1 and 
unfavorable prognosis as well as chemoresistance in cases of lung 
cancer [23].

In conclusion, using gene expression data from tumor tissues 
and non-tumor tissues, this study identified potential genomic 
biomarkers for lung cancer. Given the forthcoming extensive study 
and investigations on these genetic factors, it is plausible that the 
development of targeted medicines and the incorporation of novel 
treatment approaches into the existing repertoire may be feasible.
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